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Introduction

In the last decades, the interest of molecular oncologists has 
been focused on the evolving pathways of cancer metastasis, 
fuelled by the possibility to isolate circulating tumor cells 
(CTCs) in the blood of cancer patients (1-3).

Studies performed on cells forming a tumor have 
demonstrated that epithelial tumor cells exhibit epithelial 
properties and express on their surface molecules of 
epithelial origin (4). The ubiquitous expression of the 
epithelial cell adhesion molecule (EpCAM) in epithelial 
tumor cells allows to differentiate CTCs from blood 
cells and represents the rationale for the establishment 
of the so-called EpCAM based methods for the isolation 
of CTCs. To date, it seems clear enough that CTCs are 
highly heterogeneous and dynamically change their shape 
(5,6). Indeed, a large amount of date demonstrate that in 
cancer the expression of epithelial surface markers might 
be transiently lost during the epithelial to mesenchymal 
transition (EMT) process, to enable tumor cells to detach 
from primary tumor and to circulate into the bloodstream 
(7-9). Similarly, the same epithelial traits might be re-
acquired during the reverse process of mesenchymal to 

epithelial transition (MET), to allow cell to cell interactions 
and cancer cell growth in distant organs (10). The inadequacy 
of EpCAM as universal marker for CTCs detection seems 
thus unquestionable and alternative methods able to 
recognize a broader spectrum of phenotypes are definitely 
needed. To date, it is possible to isolate cancer cells 
circulating in the blood basing on their biological and/or 
physical properties (11).

CTCs count and molecular evaluation may provide a 
source for molecular analysis over the time of tumors during 
the clinical management of patients, and this is supposed 
to facilitate both clinical investigations and cancer patient 
care. The prognostic significance of CTCs in metastatic 
cancer patients was demonstrated for the first time more 
than ten years ago, in the pivotal study by Cristofanilli et al. 
and paved the way for the Food and Drug Administration 
(FDA) clearance for the CellSearch system (12-14). This 
semi-automated platform relies on the expression of 
EpCAM on the surface of the CTCs, being thus limited in 
its performance by the intrinsic variability of these cells. In 
this review we illustrate the mechanisms by which EpCAM 
can be down-regulated in CTCs and dissect the functional 
consequences of EpCAM loss.
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EpCAM: a mainstay in CTC detection

The EpCAM (CD326) is a cell surface glycoprotein, originally 
identified as tumor antigen, being highly expressed in 
epithelial cancers and at lower levels in normal epithelia (15). 
The contemporary discovery of this molecule by different 
research groups, led to the use of different names for the 
same molecule, based on monoclonal antibodies or cDNA 
clones (16). In 2007, in a two days meeting focused on 
EpCAMs, “EpCAM” has been unanimously suggested as 
exclusive name (17).

EpCAM is a type I transmembrane glycoprotein of about 
39-42 KDa, containing three N-glycosylation sites (6,10) 
all glycosylated as demonstrated in human and murine cell 
lines, although glycosylation of Asn198 seems to be of high 
importance for EpCAM’s cell surface expression and protein 
stability (18).

EpCAM forms a complex called tetraspanin-enriched 
microdomains (TEMs) with tetraspanins CD9 and CO-029 
(tetraspanin8), and with CD44v4-7variant isoform (19). 
This complex promotes EpCAM-specific functions as 
apoptosis resistance, cell proliferation and tumorigenicity 
(19,20). Moreover association of EpCAM, Claudin7 and 
TEMs, rather than the individual molecules promotes 
tumor progression and facilitates metastasis formation in 
colorectal cancer (21,22).

To date, our knowledge derived from more than 10 years 
of cancer research studies, indicates that EpCAM can 
act as either a tumor promoter or suppressor in human 
cancers depending on the type of cancer and the tumor 
microenvironment (23); however the presence of this 
molecule has been the main feature used to isolate CTC in 
the EpCAM era.

Although many EpCAM-based approaches have been 
developed and used in exploring CTCs, the detection 
rate of these rare cells seems critically dependent on the 
EpCAM clone used.

Antolovic et al. in 2010 demonstrated that the use 
of different anti EpCAM antibodies may lead to a 
heterogeneous detection of CTCs in patients with 
colorectal cancer employing immunomagnetic enrichment 
with mAb BerEP4 and mAb KS1/4 (24).

EpCAM era was characterized by studies performed 
by different assays all with the common aim to identify 
epithelial cells circulating within the blood through the 
expression of this surface EpCAM. Many assays have been 
widely developed for CTC enrichment and isolation each 
one with strength and weakness points.

CellSearch is the only FDA approved method used 
to obtain prognostic information through CTC count. 
CellSearch® assay was validated from Allard et al. for 
sensitivity, accuracy, and reproducibility (25). Using 
the CellSearch® assay, the prognostic value of CTC 
enumeration in metastatic breast (12,26-28), prostate (13,29) 
and colon cancer patients has been demonstrated (14,30). 
In patients with metastatic disease, superior survival was 
observed among patients with breast and colorectal cancer 
with a count of CTC fewer than five in a blood sample of 
7.5 mL; for metastatic colorectal cancer patients the cut-off 
value was established <3 CTCs/7.5 mL. The clinical utility 
of this assay has also been demonstrated in metastatic small 
and non-small cell lung cancer (31,32), stomach cancer (33), 
pancreatic cancer (34), ovarian cancer (35), and in advanced (36) 
and non-muscle invasive bladder cancer (37,38).

According to the first CellSearch® training book, a CTC 
is characterized by positivity for EpCAM, cytokeratins 
(CKs), nuclear dye [DAPI (4',6-diamidino-2-phenylindole)] 
and negativity for CD45.

All images with delineated nuclear but speckled CK, or 
with cytoplasm area which does not surround the nucleus, 
are defined as “suspicious objects” and are not counted by 
the operator as CTCs. The predictive values of all types 
of suspicious objects were evaluated by Coumans et al. 
using the automated algorithm to identify and reanalyze all 
objects CD45−, EpCAM+, CK+, and/or DAPI+; all objects 
predicted OS in their cohort of 179 patients with castration-
resistant prostate cancer (39).

Similar results were obtained in our laboratory using 
CellSearch analysis on renal cancer patients (40) and by 
other group in early and advanced NSCLC patients (41).

Another main strength of this assay is the possibility 
to perform an additional analysis with a monoclonal 
antibody of interest in the additional channel as first 
performed by Rossi et al. (42), using an anti M30 to 
recognize a neoepitope in CK-18 that becomes available 
at a caspase cleavage event during apoptosis (43,44). A 
device that collects the blood discarded after the EpCAM 
immunomagnetic detection by CellSearch system has been 
constructed to evaluate all EpCAM negative cells larger 
than 5 µm. These cells are filtered and immunostained 
to distinguish CTC from non-CTC. This innovative 
supplement offers the crucial advantage to recover all 
EpCAM-cells and to further perform immunostaining 
using different antibodies (45,46).

The clinical utility of CellSearch analysis as a prognostic 
test was definitively confirmed by Bidard et al., who recently 
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published the first European pooled analysis on clinical 
validity of CTC in 1,944 metastatic breast cancer patients 
treated between 2003 and mid-2012 in 17 centers. This 
is the largest pooled analysis, aimed to assess the clinical 
validity of CTC count by the standardized CellSearch® 
technique. The obtained results led to the conclusion 
that CTC count is an independent prognostic marker of 
PFS and OS while CEA (carcinoembryonic antigen) and 
CA15-3 (cancer antigen 15-3) levels at baseline and during 
therapy did not add further significant information (47). 
Despite the prognostic value of CTC enumeration test, 
the lack of predictive ability to guide decision-making still 
represents the major obstacle for its validation in clinical 
practice. The randomized Phase III SWOG S0500 trial was 
designed to test whether persistently high CTC levels after 
the first cycle of therapy could be used as an early indicator 
of disease progression and to determine whether switching 
at that early point to an alternate chemotherapy regimen 
would result in improved survival and time to progression 
among patients with metastatic breast cancer. Although the 
study confirmed the prognostic value of CTCs, it failed 
to demonstrate the clinical utility of counting CTCs to 
evaluate the effectiveness of frontline chemotherapy in 
metastatic breast cancer patients (48).

Among the molecular-based techniques developed, 
AdnaTest is a series of commercially available assays 
that combines the immunomagnetic enrichment of 
tumor cells and a subsequent multiplex RT-PCR. The 
potential advantage of this approach is the possibility to 
simultaneously characterize cells for several additional 
markers.

In the first step, magnetic bead conjugated with antibody 
cocktail optimized for breast, colon, ovarian, prostate or 
EMT/stem cell are used. In the second, the expression of a 
set of molecular tumor markers is analyzed at RNA level.

Several studies have been performed with this technique, 
although the results appear discordant (7,49,50).

Although AdnaTest offers an enrichment step based to an 
additional marker, which is specific for tumor type and the 
advantage to deepen the molecular pattern of the enriched 
cells, the real value of this test, seems currently quite 
limited.

CTCs are isolated by immunomagnetic beads labelled 
with antibodies against MUC1 and EpCAM. However, 
MUC1 and EpCAM are also expressed by activated 
leukocytes, and the mRNA expression of these markers 
is, therefore, not restricted to CTCs (51) leading to false-
positive findings. This test, as others commercially available 

for CTC detection, has not the potential to evolve as 
real fluid biopsy, due to its inability to offer live cells for 
morphological analysis.

For a long time, immunomagnetic separation (IMS) 
was performed using Dynabeads (52,53). These are 
magnetic beads coated with antibodies against specific 
cell surface antigens. Hardingham et al. used for the first 
time Dynabeads as EpCAM based enrichment followed by 
reverse transcription-polymerase chain reaction (RT-PCR) 
for detecting CTCs in cancer patients (54).

Furthermore, enrichment of CTCs can be achieved by 
immunomagnetic depletion of leukocytes with magnetic 
beads coated anti-CD45 antibody (55,56).

The first generation of microfluidic devices for CTCs 
capture was called CTC-Chip (57); it is a silicon chamber 
which holds 78,000 anti EpCAM-functionalized microposts 
to enhance cell-surface interactions. After this first Chip 
developed in the Massachusetts General Hospital by a trend 
group on CTC capture by this devices, others platform 
were generated: in 2011, one year later, the Herringbone 
chip has been developed in order to enhance the CTC 
recovery (58).

Other alternative devices as IsoFlux (59), MagSweeper (60) 
and GILUPI (61), all EpCAM based and with similar 
limitations to those of CellSearch, have been used, although 
some of them provide live CTCs, suitable for molecular 
analysis and in vitro expansion.

The possibility to capture, from large volumes of whole 
blood rare CTCs with both epithelial and non-epithelial 
characteristics has been object of study by Ozkumur 
et al. in 2013; in this work an inertial focusing-enhanced 
microfluidic CTC capture platform, termed “CTC-iChip” 
was described (62). The innovative characteristic of this 
chip is the ability of isolating CTCs using strategies that are 
either antigen dependent or independent and thus virtually 
applicable to all cancers. The authors demonstrated in 
patients with prostate, breast, colon, pancreatic, and lung 
cancer a very high sensitivity for the posCTC-iChip, 
particularly critical in patients with a lower CTC burden. 
Furthermore, the iChip is able to isolate cells in suspension, 
and their immobilization on a standard glass slide for 
clinical cytopathological examination and high-resolution 
imaging. The negative depletion of aberrant cells normally 
present in blood, which can be performed by iChip, 
allows the employ of this device, virtually to all cancers. 
Results obtained by the comparison between the posCTC-
iChip and the CellSearch® system, demonstrated for the 
microfluidic device a higher sensitivity in capturing low 
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CTC numbers suggesting that EpCAM-low CTCs were 
missed by the CellSearch® bulk-processing approach. An 
alternative approach for CTC capture which eliminates the 
issue of phenotypic surface marker heterogeneity is the Size 
based isolation (63,64). The advantage of this method is the 
possibility to use isolated CTC for genomic or proteomic 
analysis; for this purpose ScreenCell®, ISET filters and 
more recently lithographic microfilters have been employed 
(65-68). Isolation size based tests have the advantage to 
isolate live cells, which can be expanded in vitro or isolated 
to be further analyzed at molecular level. Mach et al. 
investigated on CTC trapping sensitivity and efficiency on 
cancer cells (69). In 2011 an inertial microfluidic size and 
deformability-based cell device for CTC enrichment was 
developed (70) and later, a Vortex Chip specific for high-
purity extraction of cancer cells from blood sample was 
used (71). A novel three dimensional microfilter device that 
can enrich viable CTCs from blood from cancer patients 
was reported by Zheng et al. The device efficiency was 
investigated by cultured tumor cells spiked in blood with 
immunofluorescent staining, confocal and scanning electron 
microscopy (72).

EpCAM: ianus bifrons in the biology of 
circulating tumor cells (CTCs)

EpCAM and EMT: a dynamic phenotype switching

Since 2004, it has become evident that CTCs deserve attention 
as a biomarker for cancer disease and progression (12). From 
a biological perspective, CTCs represent a submicroscopic 
fraction detached from a primary tumor and in transit to a 
secondary site.

Similarly to intratumor heterogeneity, a certain degree 
of intercellular heterogeneity can be also envisaged within 
CTCs (5,6). One could imagine that CTCs recapitulate 
the Darwinian evolution of cancer, through the stepwise 
acquisition of genetic and epigenetic variations, followed 
by selective outgrowth of the fittest clones. Several lines 
of evidence have recently demonstrated that CTCs may 
adopt different strategies to protect themselves from the 
cell death fate, changing their phenotype from epithelial 
to mesenchymal, grouping into cell clusters or switching 
between the cancer stem cell state and the differentiated 
state of cancer cells (73). The dynamic evolution of CTCs 
phenotype might impair their detection, when antigen-
dependent methods are used. Indeed, the EpCAM-based 
approach for the isolation of CTCs might underestimate the 

real CTCs burden, being unable to catch cells with a down-
regulated expression of epithelial markers, as it happens 
when the EMT program is activated (74). A recent study by 
Yu et al. provided evidence of EMT in human breast cancer 
specimens, both in rare cells within primary tumors and 
in a significant number of CTCs, supporting a close link 
between EMT, CTCs and metastasis as components of a 
continuous multistep process (75). The aberrant activation 
of the EMT program leads to the down-regulation of 
proteins that support the epithelial architecture. As such, 
epithelial cancer cells loose cell–cell adhesion and polarity 
to become invasive and motile mesenchymal cells. Once 
detached from primary tumors, CTCs migrate as single cells 
or as part of cell clusters and then stay as dormant tumor 
cells or grow as a distant metastasis by the reverse process 
of EMT, the MET. The transient nature of the molecular 
changes that CTCs display during their lifetime leads to the 
hypothesis that EMT is sustained by reversible epigenetic 
regulatory mechanisms rather than permanent genetic 
alterations (76). The epithelial mesenchymal transition in 
CTCs might thus be conceived as a global reprogramming 
process, through which cells not only acquire invasion and 
migration competence, but also resistance to programmed 
cell death and stem cell-like functions (77).

The dynamic regulation of EpCAM expression

Human EpCAM is a transmembrane glycoprotein of  
314 amino acids (aa), that functions as a homophilic, 
epithelial-specific intercellular cell-adhesion molecule, 
involved in the regulation of cell proliferation and 
differentiation. It consists of a large extracellular domain 
(N-terminal) of 242 aa, a single-spanning transmembrane 
domain of 23 aa and a short cytoplasmic domain of 26 aa 
(C-terminal) (78). Discovered as a dominant antigen on 
epithelia and invasive carcinomas, EpCAM was initially 
considered a mere cell adhesion molecule and became 
one of the most commonly used membrane-associated 
proteins for the isolation of CTCs from peripheral 
blood. Nevertheless, the observation that EpCAM can be 
downregulated during the dissemination of cancer cells 
from primary tumor through the bloodstream and that 
many epithelial tumors may lack EpCAM expression, 
rapidly suggested that EpCAM-based methods could be 
inadequate in the enrichment step of CTCs capture (79). That 
EpCAM expression is highly dynamic into the bloodstream 
was originally demonstrated in xenograft mouse models 
with EpCAM-expressing breast cancer cell lines, where 
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the intravenous injection of EpCAM expressing cells caused 
EpCAM downregulation 4 hours after the injection (7).  
Further studies widely demonstrated that EpCAM 
negative CTCs with mesenchymal cell like phenotype 
and downregulation of epithelial markers are frequently 
derived from EpCAM-positive primary tumors (80). Data 
are accumulating on the biology of EpCAM and increasing 
evidence indicates that the expression of EpCAM and 
its functional consequences are controlled by fine-tuned 
regulatory mechanisms. EpCAM can be transcriptionally 
downregulated by methylation of DNA at cytosine residues 
within CpG islands or can be mutated, although less 
frequently. Post-translational changes, such as glycosylation, 
have also been reported to influence the stability of EpCAM 
expression on epithelial cells membrane. The proteolytic 
cleavage of EpCAM is a further mechanism to fine-tune 
the dynamics of EpCAM expression. The membrane full 
length EpCAM protein, indeed, is subject to γ-secretase-
dependent regulated intramembrane proteolysis (RIP), and 
proteasome-mediated degradation. Finally, endocytosis 
might be an additional means by which the EpCAM 
expression can be regulated (79,81).

Regulated intramembrane proteolysis (RIP) and EpCAM 
cleavage

The finding of a proteolytic cleavage of the EpCAM 
molecule in cancer cells led to the demonstration that a 
mechanism of RIP is able to activate EpCAM as a mitogenic 
signal transducer (82). Thus, a new role for EpCAM as 
mediator of proliferative signalling has been proposed. 
The cleavage of EpCAM, which is sequentially catalysed 
by TACE and presenilin-2, leads to the cleavage of the 
extracellular domain (EpEX) of the EpCAM molecule and 
to the consequent release of the short-lived intracellular 
domain (EpICD). After RIP, the intracellular EpICD is 
released in the cytoplasm and shuttles into the cell nucleus 
in a complex with the scaffold protein FHL2 and β-catenin, 
inducing transcription of target genes, including c-myc, 
cyclins, stemness-inducing genes and genes related to cell 
proliferation (83). Shedding of EpEX during activation 
of EpCAM signalling produces a soluble ligand that can 
promote generation of EpICD in an autocrine or paracrine 
fashion. EpCAM expression and cleavage are both tightly 
regulated and only occur in case of a temporary need for 
cell proliferation. The nuclear localization of EpICD 
was first reported in human colon cancer and in different 
subtypes of thyroid cancers (84), where its presence was 

associated with some tumor aggressiveness and poor 
prognosis of patients. Hence, there is now growing evidence 
that subcellular compartmental accumulation of EpICD 
may be involved in development of epithelial carcinomas (85). 
Using anti-EpEX and anti-EpICD antibodies staining 
on tumour specimen, Fong et al. identified two EpCAM 
variants: the membrane-bound full-length protein (EpCAM 
Membranous full-length; EpCAMMF) and its truncated 
variant (EpCAM Membranous truncated; EpCAMMT) 
which lacks the intracellular domain but still has a remnant 
transmembranous and integral extracellular domain (86). 
Authors found that the ratio between EpCAMMF and 
EpCAMMT changed significantly depending on the 
tumor type. Proteolysis of EpCAM analyzed in different 
cancer types revealed strongest cleavage in cancers of the 
endometrium and the bladder, intermediate cleavage in 
gastrointestinal cancers, and low cleavage in lung, ovarian, 
breast and prostate tumors. Increased release of EpEX 
enhances EpICD cleavage resulting also in activation 
of epithelial-mesenchymal transition genes suggesting 
that EpICD might contribute to tumor initiation and 
progression. One of the consequences of EpCAM 
proteolysis is the withdrawal of the extracellular domain 
from the plasma membrane, which might account for the 
lack of EpCAM expression in CTCs from patients with 
aggressive tumor types. Being that the antibodies used for 
CTCs capture usually target the ectodomain of the antigen, 
they cannot discriminate between membrane-bound full-
length EpCAM and cleaved variants. Indeed, the status of 
nuclear EpICD in CTCs lacking EpCAM ectodomain, thus 
being missed using EpCAM-based methods, has never been 
investigated and deserves further attention.

The functional consequences of EpCAM loss

From a theoretical point of view, the dynamic expression 
of EpCAM in cancer cells might be both the result of an 
aberrant activation of the EMT program, which in turn 
leads to an overall downregulation of epithelial markers, 
or can represent itself the initial trigger for the phenotype 
switching. The properties of EpCAM as a mitogenic 
signaling might favor this latter hypothesis (87). Indeed, 
among its plethora of functions, at least two might be 
advocated to support the hypothesis of EpCAM as a driving 
force for the phenotypic changes in the EMT/MET 
switch. EpCAM has been initially proposed as a homotypic 
cell adhesion molecule, contributing to the integrity of 
epithelial tissues. However, it has been demonstrated that 
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EpCAM can weaken E-cadherin-mediated intercellular 
adhesion, decreasing overall the strength of intercellular 
adhesive junctions (16). It has been also demonstrated 
that EpCAM directly regulates the induction of EMT, 
through the expression of Snail, Slug and vimentin (88). 
The induction of EMT has been shown to generate 
stem-like cells (89), which is somehow consistent with 
the observation that nuclear translocation of EpICD 
participates in stemness genes modulation, to maintain cell 
renewal and cell survival. The positive autoregulation of 
the EpCAM loop, maintained through the soluble fraction 
EpEX, which enhances the EpCAM cleavage and triggers 
the EpICD signaling, may ensure that EpCAM provides a 
sustained signal for proliferation, self-renewal, anchorage-
independent growth and invasiveness (23). Overall, these 
observations lead to the hypothesis that the pleiotropic 
and apparently contradictory functions of EpCAM, might 
instead be tightly controlled to allow cancer cells to acquire 
phenotypic beneficial changes, which favor alternatively 
cell-cell adhesion and active proliferation or motility and 
stemness properties along the metastatic cascade.

Take home messages

CTCs are rare and multifaceted cells travelling from 
primary tumors to secondary sites. The dynamic changes in 
CTCs phenotype are increasingly being recognized and it 
is definitely apparent that CTCs represent a heterogeneous 
entity that lies beyond a univocal definition. Originally 
identified as a dominant antigen in epithelial cancers, 
EpCAM has been considered since the beginning the ideal 
marker for the detection of CTCs in the peripheral blood of 
cancer patients. However, over the last few years, a growing 
body of evidence has arisen supporting the plasticity of 
CTCs phenotype. As a consequence, a kaleidoscopic 
definition of CTCs is required and the establishment of a 
universal marker for their detection seems merely a vision. 
Conversely, the pleiotropic functions of EpCAM have 
been recently clarified and the definition of the biological 
role of this molecule in CTCs became complicated. So 
far, the experimental evidence of the dynamic expression 
of EpCAM in CTCs is limited to studies performed in 
order to demonstrate the limited sensitivity of EpCAM-
based methods in the detection of CTCs in pre-defined 
subtypes or settings of disease. It is rather conceivable that 
the functional consequences of EpCAM loss need to be 
investigated to understand what happens to CTCs when 
they undergo to the global reprogramming process that 

includes the epithelial to mesenchymal switch and the 
transient acquisition of stemness properties. Some new 
technologies, mainly CTC-chip and high-definition (HD)-
CTC assays, relying upon EpCAM independent enrichment 
of the entire CTC population, seem the optimal candidates 
for future fluid biopsies, being able to measure gene 
expression, DNA mutations and to capture live cells for 
conventional histological analysis.

Even in the current post EpCAM era the crucial role of 
EpCAM molecule in CTC detection cannot be neglected. 
The prognostic significance of EpCAM positive CTCs, 
which was recently confirmed by the first European pooled 
analysis in metastatic breast cancer, is a undisputable 
evidence. Nevertheless, the increasing evidence of CTCs 
heterogeneity, which, similarly to what described in primary 
tumors, likely evolves during the disease course, needs to be 
further investigated.

In addition to difficulties to pinpoint an antibody 
combination to cover the complex heterogeneity of CTCs, 
avoiding false negative results, there are at least three 
more questions to be addressed: (I) some systems are very 
expensive; this bias automatically exclude some research 
groups; (II) each system used for the enrichment step has 
different sensitivity and (III) there is necessity to standardize 
each method. In the post-EpCAM era we have the feeling 
that no single marker will be sufficient to isolate the entire 
pool of CTC, as well as no marker combination will be 
sufficient to cover the extreme heterogeneity of these cells 
in different tumor types.

Whether EpCAM cleavage might represent a beneficial 
change for CTCs to survive, proliferate and acquire stem-
like features deserves to be deepened.
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