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Abstract

Objective: To develop and validate a radiomics prediction model for individualized prediction of perineural

invasion (PNI) in colorectal cancer (CRC).

Methods: After computed tomography (CT) radiomics features extraction, a radiomics signature was constructed

in derivation cohort (346 CRC patients). A prediction model was developed to integrate the radiomics signature

and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen (CEA) level]. Apparent

prediction performance was assessed. After internal validation, independent temporal validation (separate from the

cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an

easy-to-use nomogram.

Results: The developed radiomics nomogram that integrated the radiomics signature and CEA level showed

good calibration and discrimination performance [Harrell’s concordance index (c-index): 0.817; 95% confidence

interval (95% CI): 0.811–0.823]. Application of the nomogram in validation cohort gave a comparable calibration

and discrimination (c-index: 0.803; 95% CI: 0.794–0.812).

Conclusions: Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy

and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may

provide a basis for individualized auxiliary treatment.
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Introduction

Colorectal cancer (CRC) is the third most common cancer
globally  (1).  Characterized  by  neoplastic  invasion  of
nervous  structures  and  spread  along  nerve  sheaths,
perineural  invasion  (PNI)  has  been  recognized  as  an

ominous  pathologic  feature  with  prevalence  around
20%–30% at the time of resection in CRC patients (2,3).
The presence of  PNI at  the  time of  resection has  been
reported as an independent prognostic factor indicating a
more aggressive tumor phenotype with higher recurrent
rate and reduced survival (3,4). The identification of PNI
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status has been suggested to assist in selecting patients who
could potentially benefit from adjuvant therapy (5,6).

As  a  crucial  part  of  preoperative  workup  for  CRC
patients in clinical practice, computed tomography (CT)
facilitates  noninvasive  assessment  compared with  other
modalities such as preoperative biopsy and serum test (7,8).
However,  conventional  CT  interpretation  fails  in  the
detection  of  PNI.  Other  than  the  commonly  used
qualitative  imaging  descriptors,  recent  advance  in
“radiomics”  has  enabled  the  extraction  of  quantitative
descriptors from routinely acquired CT (9-11). In the last
few years,  several  prognostic  radiomics  signatures  have
been proposed to quantify and monitor tumor phenotypic
characteristics,  with  various  prediction  performances
reported  in  the  field  of  oncology  (9).  In  CRC,  several
studies have been conducted on CT-based texture analysis
(12-17).  Preliminary evidence has indicated that texture
analysis on CT images is potentially predictive of survival
for CRC patients (15,16). In addition, CT texture analysis
has been reported to be useful for prediction of therapeutic
response after cytotoxic chemotherapy in CRC patients
with liver metastasis (12,17). It is of interest that whether
there is an association between the prognostic pathologic
feature of PNI and radiomics features, which to the best of
our knowledge has not been studied. Therefore, the aim of
this study was to develop and validate a radiomics prediction
model for individualized prediction of PNI in CRC.

Materials and methods

Patients

This retrospective study was approved by the institutional
review board of Guangdong General Hospital, Guangdong
Academy  of  Medical  Sciences,  and  written  informed
consent was waived. The records of consecutive patients
with colorectal adenocarcinomas who underwent surgical
resection  of  their  tumors  with  curative  intent  between
January 2007 and April 2010 were reviewed to form the
derivation  cohort  of  this  study,  and  346  cases  were
enrolled. The records of consecutive patients between May
2010  and  December  2011  were  evaluated  to  form  an
independent  temporal  validation  cohort,  and  217  cases
were enrolled. The patient recruitment process is presented
in Figure 1.

Baseline  data  pertaining to  demographics,  pathology,
carcinoembryonic antigen (CEA) value and staging were
reviewed and recorded. Staging was performed according
to the 7th edition of the American Joint Committee on

Cancer (AJCC) TNM staging system (18). Histopathologic
analysis  for  the determination of  PNI status  is  listed in
Appendix A1.

CT imaging acquisition and retrieval procedure

Acquisition  parameters  and  retrieval  procedure  of
abdominal CT are listed in Appendix A2.

Radiomics feature extraction

Portal  venous  phase  contrast-enhanced  CT  data  were
loaded into in-house radiomics features extraction software
with  a lgorithms  implemented  in  Matlab  2010a
(Mathworks, Natick, USA). A region of interest (ROI) was
delineated around the outline of the tumor for the largest
cross-sectional area (Appendix Figure A1).

A total of 150 gray-level histogram and gray-level co-
occurrence  matrix  (GLCM)  radiomics  features  were
extracted  from  the  CT  image,  with  the  extraction
algorithm listed in Appendix Table A1.

Inter- and intra-observer radiomics  feature extraction
reproducibility

Eighty randomly chosen cases were initially analyzed to
assess inter-observer and intra-observer reproducibility of
ROI-based radiomics feature extraction. Two radiologists
with 10 (Reader 1) and 12 years (Reader 2) of experience in
abdominal CT interpretation performed the ROI-based
texture feature extraction procedure,  in a  blind fashion.
Reader  1  repeated  the  procedure  after  one  week,  and
subsequently performed the workflow for the remaining
cases. Inter- and intra-class correlation coefficients (ICCs)
were  used  to  measure  the  intra-  and  inter-observer
agreement of the radiomics features extraction. An ICC
greater than 0.75 indicates good agreement. The similar
workflow has been described in several published radiomics
studies (13,19).

The  inter-observer  ICCs  calculated  on  the  basis  of
Reader 1’s first-extracted features and Reader 2’s ranged
from 0.751 to 0.903. The intra-observer ICC calculated
based on Reader 1’s  second round of  feature extraction
ranged from 0.794 to 0.911. Therefore, all outcomes were
based on the features extracted by Reader 1.

Statistical analysis

Patient characteristics

The Mann-Whitney U test was used to assess difference in
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patients’  age,  whereas  χ2  tests  were  used  to  assess  the
differences in other patient characteristics (sex, CEA level,
and tumor location) between the derivation and validation
cohort,  and  within  the  PNI-positive  group  and  PNI-
negative  group.  Differences  in  PNI  positivity  between
patients  with  different  characteristics  (sex,  CEA  level,
tumor location, and stage I–II vs. III–IV) were also assessed
using χ2 tests.

Radiomics signature building and discrimination performance

assessment

Radiomics  signature  building  was  performed  in  the
derivation cohort. Using the least absolute shrinkage and
selection  operator  (lasso)  method (20),  the  most  useful
prognostic features were selected and a radiomics signature
was  built  through  a  linear  combination  of  the  selected
features weighted by their coefficients, with a radiomics
score (Rad-score) calculated for each patient.

Because of the non-normal distribution of the data, the
potential association of the radiomics signature with the

presence  of  PNI  was  assessed  in  the  derivation  and
validation cohort using the Mann-Whitney U test.

To  quantify  the  discrimination  performance  of  the
radiomics signature, the Harrell’s concordance index (c-
index)  was  measured  in  both  the  derivation  and
independent  validation  cohort,  with  a  bootstrapping
technique used for internal validation. The c-index can be
interpreted  as  the  probability  that  a  subject  with  a
particular  outcome is  given a higher probability  of  that
outcome by the predictor or model than a randomly chosen
subject without the outcome (20). A value of 0.5 implies
that the predictor or model has no discriminatory ability,
and a value of 1.0 implies perfect discrimination (20).

Radiomics prediction model development

Multivariable  logistic  regression  analysis  was  used  to
develop  a  prediction  model  in  the  derivation  cohort.
Candidate  predictors  included the developed radiomics
signature, age, sex, tumor location, and CEA level. For age
and the radiomics signature, a linear relationship with the

 

Figure 1 Patient recruitment process.
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PNI  status  was  found  to  be  a  good  approximation
(Appendix  A3),  so  these  two  variables  were  coded  as
continuous variables. As a nonlinear relationship was found
for the CEA values with PNI status (Appendix A3), thus it
was handled as a categorical variable with a threshold set at
5 ng/mL based on clinical consensus. Sex was considered as
a binary variable, whereas tumor location was considered as
a multi-categorical variable. Backward stepwise selection
was  applied,  using  the  likelihood  ratio  test  with  the
stopping  rule  being  Akaike’s  information  criterion
(significance level α was set to 0.157) (21). To facilitate easy
calculation of individualized risk in clinical practice, the
final model was converted to a radiomics nomogram.

Apparent prediction performance of the prediction model

In the derivation cohort, model performance was assessed
in terms of calibration and discrimination. A calibration
curve  was  plotted  to  compare  the  agreement  between
observed  outcomes  (Y-axis)  and  the  predictions  of  the
model (X-axis), where the perfect calibration should lie on
or  around a  45°  line.  The  Hosmer-Lemeshow test  was
conducted, where a significant test statistic (P<0.05) implies
a poor calibration (22). c-index was calculated to quantify
the discrimination performance of the radiomics prediction
model.

Validation of the prediction model

Model performance was validated in terms of calibration
and  discrimination,  with  calibration  curve,  Hosmer-
Lemeshow test and c-index derived.

Regarding  internal  validity,  the  radiomics  prediction
model was subjected to a 1000-resampled bootstrapping
technique.

For  the  independent  validation  cohort,  the  logistic
regression  formula  of  the  model  derived  from  the
derivation cohort was applied to the results for all patients,
with a  total  points  calculated for  each patient.  Logistic
regression in this  cohort  was  then performed using the
total points as a factor.

Stratification analysis

Previous studies have advocated that node-negative, PNI-
positive stage II patients should be managed similarly to
stage III  patients  and should receive currently available
adjuvant therapy (3). Hence the need for taking PNI status
into account when stratifying patients for adjuvant therapy
has been underscored especially for stage II CRC patients
(4,23,24). Therefore, in this study, stratification analysis of

the  nomogram  prediction  performance  was  done
specifically in stage II CRC patients within the validation
cohort.

R software (Version 3.0.1; R Foundation for Statistical
Computing, Vienna, Austria) was used for the statistical
analysis, with packages in use listed in Appendix A4. P<0.05
was considered statistically significant.

Results

Patient characteristics

The derivation cohort consisted of 346 cases (222 males
and 124 females; mean age, 61.76±13.92 years), with 217
cases identified as the validation cohort (141 males and 76
females;  mean age,  61.91±12.52  years).  Other  than  the
tumor  location  (P=0.030),  no  difference  was  found  in
clinical  characteristics  between  the  derivation  and
validation cohort within the PNI-positive group or PNI-
negative  group  (P=0.065–0.872;  Table  1).  The  PNI
positivity  was  18.8%  and  15.7%  in  derivation  and
validation  cohorts,  respectively.  In  both  the  derivation
cohort or validation cohort, there was significant difference
in the PNI positivity between patients with abnormal CEA
level and normal CEA level (P=0.001 for the derivation
cohort, P=0.029 for validation cohort), as well as between
stage  I–II  patients  and  stage  III–IV  patients  (P<0.001,
P=0.04); whereas there was no significant difference in the
PNI positivity between patients with different sex or tumor
location (P=0.071–0.722).

Radiomics  signature  building  and  discrimination
performance assessment

A total of 29 radiomics features with non-zero coefficients
were selected (Figure 2A). A radiomics signature was built
based on these features and corresponding coefficients. A
Rad-score  was  calculated for  each patient  based on the
radiomics signature (Appendix A5). Individual contribution
of the 29 features to the radiomics signature building is
described in Figure 2B.

There  was  a  significant  association  between  the
radiomics signature and the presence of PNI (P<0.0001 for
both the derivation and validation cohort). PNI-positive
patients generally had higher Rad-scores compared with
the  PNI-negative  patients  {median  [interquartile  range
(IQR)]: derivation cohort, –0.95 (–1.37, –0.30) vs.  –1.80
(–2.36, –1.35); validation cohort, –1.11 (–1.48, –0.80) vs.
–1.73 (–2.30, –1.23)}.
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Regarding discrimination performance, the mean c-index
of  the  radiomics  signature  was  0.809  [95% confidence
interval (95% CI): 0.802–0.816] in the derivation cohort,
0.810 through the bootstrapping internal validation, and
0.777 (95% CI: 0.767–0.787) in the validation cohort.

Radiomics prediction model development

The  final  model  consists  of  two  predictors  (radiomics
signature  and  CEA  level;  Table  2).  The  converted
nomogram is shown in Figure 3.

Apparent prediction performance of prediction model

In derivation cohort, the calibration curve depicted good
agreement between prediction and observation (Figure 4A;
P=0.276). Good discrimination was also shown, with a c-
index of 0.817 (95% CI: 0.811–0.823).

Validation of prediction model

Through  the  bootstrapping  internal  validation,  good
calibration  was  observed  (Figure  4B;  P=0.132).  Good

discrimination performance was internally validated, with a
c-index of 0.812.

Regarding  the  independent  validation  cohort,  good
calibration (Figure 4C; P=0.132) and good discrimination
performance  were  validated  (c-index:  0.803;  95%  CI:
0.794–0.812).

Stratification analysis

Good discrimination ability of the prediction model was
demonstrated for stage II CRC patients in the validation
cohort (c-index: 0.779; 95% CI: 0.753–0.805).

Discussion

In this study, a radiomics model integrating a constructed
radiomics  signature  and  CEA  level  was  developed  and
validated  for  individualized  prediction  of  PNI  in  CRC
patients,  the  conversion  of  which  into  an  easy-to-use
nomogram  may  assist  in  effective  risk  stratification  of
patients  who  could  potentially  benefit  from  adjuvant
therapy in clinical practice.

Table 1 Patient characteristics

Characteristics
PNI-positive [n (%)]

P
PNI-negative [n (%)]

P
Derivation cohort Validation cohort Derivation cohort Validation cohort

Age
[median (IQR)] (year) 62 (50.0, 70.0) 61 (51.5, 67.8) 0.865 63 (54.0, 73.0) 64 (53.0, 72.0) 0.872

Sex 0.515 0.577

　Male 48 (73.8) 23 (67.6) 174 (61.9) 118 (64.5)

　Female 17 (26.2) 11 (32.4) 107 (38.1) 65 (35.5)

Tumor location 0.555 0.030

　Cecum-ascending colon 20 (30.8) 7 (20.6) 49 (17.4) 52 (28.4)

　Transverse-descending
colon 5 (7.7) 4 (11.8) 20 (7.1) 12 (6.6)

　Sigmoid colon 10 (15.4) 8 (23.5) 80 (28.5) 38 (20.8)

　Rectum 30 (46.2) 15 (44.1) 132 (47.0) 81 (44.3)

CEA level 0.542 0.065

　Normal 29 (44.6) 13 (38.2) 188 (66.9) 107 (58.5)

　Abnormal 36 (55.4) 21 (61.8) 93 (33.1) 76 (41.5)

TNM staging

　I 1 (1.5) 1 (2.9) 0.307 57 (20.3) 28 (15.3) 0.186

　II 9 (13.8) 9 (26.5) 103 (36.7) 74 (40.4)

　III 43 (66.2) 21 (61.8) 93 (33.1) 70 (38.3)

　IV 12 (18.5) 3 (8.8) 28 (10.0) 11 (6.0)

IQR, interquartile range; CEA, carcinoembryonic antigen; PNI, perineural invasion; P-value was derived from the comparison of
patient characteristics between derivation cohort and validation cohort, within PNI-positive subgroup and PNI-negative subgroup
respectively.
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The developed radiomics signature in this study showed
significant  association  with  PNI,  which  successfully
stratified  patients  according  to  their  risk  of  PNI
(P<0.0001). Compared to the prognostic studies conducted
with individual CT-based texture features in CRC (15,16),
the construction of a radiomics signature that combines a

panel of features as a prognostic imaging marker may be a
superior choice, which has nowadays been regarded as a
more  powerful  method  to  affect  clinical  management,
suggested by previous “-omics” studies (25-27). Prediction
performance shown by the constructed radiomics signature
(c-index: 0.777; 95% CI: 0.767–0.787) supports the concept

 

Figure 2 Radiomics features selection. (A) Tuning parameter (λ) selection in the least absolute shrinkage and selection operator method
(lasso) model used ten-fold cross-validation. Lasso coefficient profiles of the 150 texture features. A coefficient profile plot was produced
against the log-lambda sequence. The vertical line was drawn at the value selected using ten-fold cross-validation, where the optimal λ
resulted in 29 non-zero coefficients; (B) Individual contribution of the 29 features to the radiomics signature building. Nodes represent the
29 features of the radiomics signature. Size of each node represents the degree of contribution of individual feature to the signature
building, according to its coefficient during the feature selection. Nodes marked in blue represent features with negative contribution to
perineural invasion (PNI) (+); whereas those marked in red representing features with positive contribution to PNI (+). Nodes marked in
yellow represent the feature subgroups. Among all the subgroups, subgroup of gray-level co-occurrence matrix (GLCM) features (Energy)
achieves the highest contribution to the radiomics signature building.
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that radiomics quantitative image-driven biomarkers have
potential to extract in vivo biologic information and further
expand the  horizons  of  imaging  interpretations  toward
greater  precision to  improve  diagnostic  and prognostic
accuracy in decision support (10).

As  the  radiomics  approach  extracts  high-dimension
feature  data  with  quite  a  large  number  of  candidate
predictors,  the  process  of  selecting  relevant  predictor
variables to build a radiomics signature is  a challenging
endeavor (10). The problem of overfitting may occur and
magnify as the ratio of the number of observations to the
number  of  predictors  decreases,  especially  with  small
sample sizes. Therefore, as an alternative to the competing
model selection procedures (such as stepwise regression
that magnifies problems associated with overfitting), the

lasso method was used to select radiomics features in this
study, which has the advantage of shrinking some estimates
to exactly zero and regularizing regression coefficients to
account  for  potential  overfitting  (20).  Additionally,  as
overfitting  is  a  central  problem  in  “-omics”  based
prediction modelling, the validity of the developed model
should be considered for new patients (28). Therefore, in
our  study,  a  bootstrapping  re-sampling  procedure  and
temporary independent validation were used to address the
issue of model uncertainty. As shown by the results, the
prediction model showed comparable performance after
internal and independent validation.

Among the potential clinical candidate predictors, the
CEA level was found to be an independent predictor of
PNI, which is consistent with the published studies that
have demonstrated an association between elevated serum
CEA level and positive PNI (29). Although the CEA value
was initially recorded as a continuous variable, given the
priori clinical consensus that the threshold value for the
level of CEA used in clinical practice was ≤5 ng/mL and >5
ng/mL,  the  linear  relationship  between  the  recorded
continuous values of CEA and the PNI status was checked.
As  the  restricted  cubic  spline  showed  that  there  was  a
nonlinear relationship between the CEA values and the
PNI status, CEA was handled as a categorical variable with
5 ng/mL determined as  the  threshold based on clinical
consensus.  Although CEA was  associated with the PNI
status of CRC patients, its use as a single predictor alone
fails to reliably estimate the absolute probability or risk of
PNI, which is crucial to risk-stratify patients for different
treatment strategies as required in precision medicine. In
the  past  decade,  emerging  biomarkers  with  potential
clinical value identified by advances in high-throughput
biotechnologies have triggered calls for model building that
combines multiple biomarkers (27,30). As demonstrated in
our  study,  the  developed  prediction  model  which
integrated the radiomics signature and independent clinical
predictors showed satisfactory performance in assisting the
estimation  of  risks  of  PNI,  with  good  discrimination

Table 2 Prediction model developed based on the derivation cohort

Intercept and predictors β OR 95% CI P

Intercept 0.504   0.171

Radiomics signature 1.683 5.382 3.310, 8.747 <0.0001

CEA level 0.755 2.128 1.136, 3.980 0.018

CEA, carcinoembryonic antigen; OR, odds ratio; 95% CI, 95% confidence interval; The predicted probability of perineural invasion
(PNI) can be calculated using the following formula: P (PNI) = 1/{1 + exp [– (0.504 + 1.683 × radiomics signature + 0.755 × CEA
level)]}. Predictor value is one when PNI is positive and zero when negative.

 

Figure 3 The radiomics nomogram. The nomogram integrates
two items: the radiomics signature and carcinoembryonic antigen
(CEA) level. Locate the patient’s radiomics score (Rad-score) that
calculated based on the radiomics signature on the “Radiomics
signature” axis, followed by drawing a line straight upward to the
“Points”  axis  to  determine  how  many  points  toward  the
probability of perineural invasion (PNI) the patient receives for his
Rad-score. After repeating the process for the CEA level, sum the
points achieved for each of the two predictors. Finally we located
the final  sum on the “Total  Points”  axis  and then drew a line
straight down to derive the patient’s probability of PNI.
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(c-index:  0.803;  95%  CI:  0.794–0.812)  and  calibration
(model-predicted  risk  of  PNI  agrees  closely  with  the
observed risk; P=0.132).

The PNI-positive rate varies by AJCC stage in this study
(positive  rate:  stage  I–II  vs.  stage  III–IV  =  3.96%  vs.
28.47%), which is consistent with the literature showing
that PNI is associated with more advanced disease in CRC
based on its  correlation with higher stages.  In stage IV
CRC  patients  with  resectable  tumors  who  underwent
curative operations, PNI was reported to be a prognostic
factor of both survival and recurrence (31). Compared with
stage IV CRC patients, prognosis is more variable for stage
II and stage III. As reported in a previous study, the overall
survival  of  patients  deteriorated  in  the  order  of  PNI-
negative at stage II, PNI-positive at stage II/PNI-negative
at stage III, and PNI-positive at stage III. It was thereby
proposed that patients at stages II and III could be further
divided according to their PNI status to provide a basis for
individualized auxiliary treatment (32). It is worth noting
that for stage II CRC patients, postoperative chemotherapy
did not improve the 5-year disease-free survival (DFS) of
those with PNI-negative tumors, whereas the PNI-positive
chemotherapy group showed higher 5-year DFS. Overall,
the particular interest in determining the potential role of
PNI in therapy stratification is in node-negative stage II
CRC patients who currently have the option to consider
receiving adjuvant chemotherapy. Therefore, in this study,
we performed a stratification analysis which showed that
the radiomics prediction model performed well for stage II

CRC patients (c-index: 0.779; 95% CI: 0.753–0.805).
In  addition  to  the  ability  to  predict  the  outcome  of

interest accurately, an optimal clinical prediction model
should have the potential  for  ease  of  use  in  the clinical
setting. Therefore, the prediction model proposed in this
study was presented as an easy-to-use nomogram, which
permits  easy  calculation  of  PNI  risk  tailored  to  each
individual patient during clinical encounters, and assists
clinical decision-making. Both the internal validation and
prospective temporal validation of the model performance
support  the  robustness  of  the  developed  radiomics
nomogram in this study.

One  major  limitation  within  this  work  is  that  the
semantic features that are commonly used in the radiology
lexicon to describe ROI on CT images were not considered
as potential  model  candidates.  Although tumor size has
shown prognostic  value  in  several  solid  tumors  (33,34),
primary tumor of CRC is relatively flexible and grows with
no preferred direction, which may result in various tumors
shapes  and  potential  interreader  variability  or  even
inaccuracy  in  the  tumor  diameter  or  size  measuring.
Regarding  the  candidate  predictor  selection  involving
radiological parameters, inter-observer variability caused by
subjective interpretation is a specific concern, for which
candidate predictors should be reliably measured and well
defined by any observer (35). For N stage, size criteria are
not sufficiently accurate as the majority of rectal cancer
lymph node metastases occur in nodes less than 6 mm in
size (36).  Therefore,  simple semantic  features  were not

 

Figure 4 Calibration curves of the radiomics model prediction. (A) Calibration curve in the derivation cohort (Hosmer-Lemeshow test;
P=0.276);  (B)  Calibration curve in the internal  validation cohort  (Hosmer-Lemeshow test;  P=0.132);  (C)  Calibration curve in the
independent validation cohort (Hosmer-Lemeshow test; P=0.132). Calibration curves depict the calibration of the radiomics prediction
model in terms of the agreement between the predicted probability of perineural invasion (PNI) and observed rate of PNI. The Y-axis
represents the actual observed PNI rate whereas the X-axis represents the model predicted PNI probability. The diagonal blue dash line
represents a perfect prediction by an ideal model. The dashed smooth curve reflects the relation between observed rate of PNI and
predicted probability of PNI using the radiomics prediction model. Triangles indicate the incidence of PNI in quintiles of patients with
similar predicted probabilities. Spikes at the bottom represent distribution of predicted probabilities of PNI.
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considered as candidate predictors in this study to prevent
potential bias in the estimation of the association between
predictors and PNI status.

A further limitation is that our study only focuses on one
of the many site-specific independent prognostic factors,
which include tumor deposits,  circumferential  resection
margin, microsatellite instability, and KRAS gene analysis.
These  prognostic  factors  are  well  supported  in  the
literature and generally used in patient management (18).
Therefore,  it  is  of  interest  to  determine  whether  the
radiomics approach could provide important information
regarding  these  prognostic  factors.  In  order  to  enable
evidence-based clinical decision support, an optimal way to
integrate the radiomics approach in conjunction with these
prognostic factors to correlate with clinical outcomes data
warrants further investigation.

Third, whole-tumor analysis was not performed in this
study. Instead, radiomic features were extracted from the
largest cross-sectional area of tumor. Theoretically, whole-
tumor analysis may represent more diverse components of
tumor heterogeneity by avoiding sampling errors that may
result from single slice selection. Although there have been
previous  results  supporting this  idea,  a  study aiming to
determine whether texture features of untreated hepatic
metastatic CRC relate to pathologic features and clinical
outcomes reported that a single slice-2D texture analysis
was adequate (14). Moreover, a more recent study by Ahn
et  al.  has  reported that  while  skewness  observed on 2D
analysis  and  SD  observed  on  3D  analysis  were  both
independent predictors for the prediction of therapeutic
response after cytotoxic chemotherapy in patients with liver
metastasis from CRC, the odd ratio of skewness seen on
2D analysis was higher than that of the SD observed on 3D
analysis (12). Therefore, considering that the 3D whole-
tumor analysis is more computationally complex and time-
consuming, we only delineated the largest cross-sectional
area  for  features  extraction.  Further  investigations  are
warranted  to  determine  whether  the  features  extracted
from a single largest cross-sectional slice may adequately
describe the characteristics of CRC.

Conclusions

Integrating the radiomics signature and CEA level into a
radiomics prediction model enables easy and effective risk
assessment of PNI in CRC. This stratification of patients
according  to  their  PNI  status  may  provide  a  basis  for
individualized auxiliary treatment.
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Appendix materials

Appendix A1

Histopathologic analysis for the determination of perineural

invasion (PNI) status

Original  hematoxylin  and  eosin-stained  slides  of  the
resected  tumor  were  collected  from  the  pathology
department and then reviewed for PNI, which was defined
as tumor cells within any layer of the nerve sheath or tumor
in the perineural space involving at least one third of the
nerve circumference.

Appendix A2

Computed tomography (CT) image acquisition and retrieval

procedure

All patients underwent contrast-enhanced abdominal CT

using  one  of  the  two  multi-detector  row CT (MDCT)
systems (GE Lightspeed Ultra 8, GE Healthcare, Hino,
Japan or 64-slice LightSpeed VCT, GE Medical systems,
Milwaukee, Wis, USA). The acquisition parameters are as
follows: 120 kV; 160 mAs; 0.5- or 0.4-second rotation time;
detector collimation: 8×2.5 mm or 64×0.625 mm; field of
view, 350×350 mm; matrix, 512×512. After routine non-
enhanced CT, arterial and portal venous-phase contrast-
enhanced CT was performed after a 22 s and 60 s delay,
following  intravenous  administration  of  90–100  mL of
iodinated contrast material (Ultravist 370, Bayer Schering
Pharma, Berlin, Germany) at a rate of 3.0 or 3.5 mL/s with
a  pump injector  (Ulrich  CT Plus  150,  Ulrich  Medical,
Ulm, Germany). Contrast-enhanced CT was reconstructed
with reconstruction thickness of 2.5 mm.

Portal  venous-phase  CT images  (thickness:  2.5  mm)
were  retr ieved  from  the  picture  archiving  and
communication system (PACS) (Carestream, Canada) for
image feature extraction because of well differentiation of
tumor tissue from adjacent normal bowel wall.

Appendix A3

Examination of linear relationship assumption

Restricted  cubic  spline  was  used  to  validate  the  linear
relationship assumption between each of the continuous
variables [age, radiomics signature, and carcinoembryonic
antigen (CEA) values] and perineural invasion (PNI) status.
The number of knots used to fix splines in modeling was
three,  with  knots  placed  at  fixed  and  equally  spaced
percentiles of a variable’s marginal distribution.

A linear relationship with the PNI status was found to be
a good approximation either for the age or the radiomics
signature,  whereas  nonlinear  relationship  was  found
between  the  CEA values  and  the  PNI  status  (Appendix
Figure A2).

 

Figure A1  Region of  interest  (ROI)  delineation.  An ROI was
delineated around the outline of the tumor for the largest cross-
sectional area.

 

Figure A2 Examination of the linear assumption of relationships between the continuous variables and perineural invasion (PNI) status.
Linear relationships with the PNI status were found to be a good approximation for the age of patients (A) and the radiomics signature (B).
While a nonlinear relationship was observed between the carcinoembryonic antigen (CEA) values and the PNI status (C).



Appendix A4

Packages of R software used for statistical analysis

The least absolute shrinkage and selection operator method
(lasso) binary logistic regression was performed using the
“glmnet” package. Multivariate binary logistic regression,
nomogram and calibration plots were done with the “rms”

package. C-index calculation was performed the “Hmisc”
package. Hedges’ g and the OVL were calculated according
to Hedges and Rom, respectively. Internal validation of the
c-index was performed the “rms” package. The reported
statistical significance levels were all two-sided, with the
statistical significance set at 0.05.

Appendix A5

Radiomics score (Rad-score) calculation formula:

Rad-score = - 145.55802856 - 2.51510129 × correlation_45_0

　　　　　+ 21.19925453 × energy_0_0 + 20.60420926 × energy_45_0

　　　　　- 4.80508483 × homogeneity_0_0 + 0.00004050 × SD_25_0

　　　　　- 0.01805829 × mean_10_0 - 3.89565929 × skewness_1.0

　　　　　+ 4.36576834 × correlation_135_1.0 + 227.28439145

　　　　　× energy_45_1.0 + 27.71139806 × homogeneity_45_1.0

　　　　　- 0.00000123 × SD_1.0 + 0.01534620 × mean_50_1.0

　　　　　- 0.03434944 × mean_25_1.0 + 0.00199249 × SD_10_1.0

　　　　　+ 1.67031435 × correlation_0_1.5 + 0.30388532

　　　　　× correlation_135_1.5 + 13.77543375 × entropy_0_1.5

　　　　　+ 16.80920277 × entropy_45_1.5 + 0.00664641 × mean_25_1.5

　　　　　+ 2.67983781 × correlation_45_2.0 - 0.89050889

　　　　　× correlation_135_2.0 + 1.53546513 × kurtosis_2.5 + 0.06955074

　　　　　× contrast_45_2.5 + 0.48838418 × contrast_90_2.5

　　　　　+ 29.02446667 × correlation_0_2.5 + 0.00620855

　　　　　× homogeneity_0_2.5 - 0.00010414 × SD_2.5 + 0.00751564

　　　　　× mean_25_2.5 + 0.00001464 × SD_25_2.5

 



Table A1 Radiomics feature extraction algorithm

Type Description Calculation formula Feature

Gray-level histogram features

　Skewness
Degree of asymmetry around
the mean value in the gray
level histogram

skewness =
1
N
PN

i=1
¡
X (i)¡ ¹X

¢3µq
1
N
PN

i=1
¡
X (i)¡ ¹X

¢2¶3 skewness_σ

　Kurtosis
Sharpness of the gray level
histogram

kurtosis =
1
N
PN

i=1
¡
X (i)¡ ¹X

¢4µq
1
N
PN

i=1
¡
X (i)¡ ¹X

¢2¶4 kurtosis_σ

　Mean
Average value of the gray level
histogram m ean = 1

N

NP
i=1

X (i) mean_σ

　SD
Stability of the gray level
histogram SD = 1

N

NP
i=1

¡
X (i)¡ ¹X

¢2 SD_σ

　Percentile mean; percentile SD
Calculated from the top 50%,
25%, and 10% of the
histogram curve

m ean ¯ = 1
N¡M

NP
i=M

X (i)

SD ¯ = 1
N¡M

NP
i=M

¡
X (i)¡ ¹X

¢2 mean_β_σ SD_β_σ

GLCM features

　Contrast

Measures local intensity
variation, reflects the
uniformity of image grayscale
distribution and the degree of
thickness in texture

contrast =
N gP
i=1

N gP
j=1
ji ¡ j j2 P (i; j ) contrast_α_σ

　Correlation

The gray level linear
dependence between the
pixels at the specified
positions relative to each other

correlation =
PN g

i=1
PN g

j=1 ij P(i;j )¡¹i(i)¹j(j )
¾x(i)¾y(j )

correlation_α_σ

　Entropy
The inhomogeneity of an
image entropy = ¡

N gP
i=1

N gP
j=1

P (i; j ) log [P (i; j )] entropy_α_σ

　Energy
The sum of squares of entries
in the GLCM energy =

N gP
i=1

N gP
j=1
[P (i; j )]2 energy_α_σ

　Homogeneity
The inverse of the Contrast
weight homogeneity =

N gP
i=1

N gP
j=1

P(i;j )
1+ji¡j j2

homogeneity_α_σ

SD, standard deviation; GLCM, gray-level co-occurrence matrix; X(i), the intensity of gray level i; N, the sum of pixels in the image;
σ, the Laplacian of Gaussian filter value applied, which could be 0, 1.0, 1.5, 2.0 and 2.5; M, the number of pixels in the histogram on
the percentage of (1-β); x, y, the spatial coordinates of the pixel; P(i, j), the co-occurrence matrix by the δ=1 and θ(0°, 45°, 90°, 135°);
Ng, the number of discrete intensity levels in the image; μ, the mean of P(i,j); μx (i), the mean of Px (i); μy(j), the mean of Py (j); σx (i), the
standard deviation of Px (i); σy (j), the standard deviation of Py (j); α, the considered direction, which could be 0°, 45°, 90°, and 135°;
β, the top percentage of the histogram curve, which could be 50%, 25%, and 10%.


