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Abstract

Microvessels promote proliferation of tumor cells by delivering oxygen and nutrients, but rapid growth of tumors

results in unmet demands for oxygen and nutrients, thereby creating a hypoxia microenvironment. Under hypoxic

conditions, vascular endothelial cells (ECs) initiate the formation of immature and abnormal microvasculature. This

results in leakage and tortuosity that facilitates tumor cell invasion, metastasis and resistance to cytotoxic treatment.

Radiotherapy (RT) is a vital tumor treatment modality. Currently, more than 60% of patients with malignant

tumors receive RT at certain points during their treatment. Hypoxia induced by abnormal microvessels can hamper

the cytotoxic effect of ionizing radiation, particularly, stereotactic body radiotherapy (SBRT). Anti-angiogenesis

(AA) agents are known to reduce and renormalize microvessels  in tumors,  and hence alleviate hypoxia.  The

combination of AA agents with SBRT may have a synergistic role in inhibiting the growth of tumors. On the

contrary, large doses of irradiation may affect tumor microvessels itself.  In this review, we aim to clarify the

relationship between SBRT and microvessel formation in tumors. In addition, we provide a retrospective analysis of

the combination therapy involving SBRT and AA agents in preclinical and clinical practice to define its role in anti-

tumor treatment.
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Introduction

Though stereotactic body radiotherapy (SBRT), also called
as stereotactic ablative radiotherapy (SABR) or stereotactic
radiosurgery (SRS), was developed over 60 years ago, due
to serious collateral damage to surrounding normal tissue,
SBRT could not be applied extensively in clinic until the
arrival of precision radiotherapy (RT) about two decades
ago. Both radiation delivery and image guidance are vital
technological advances that enable delivery of large doses
of  radiation  to  tumors  thereby  reducing  damage  to
surrounding normal tissues. SBRT has been approved as an
important treatment modality in patients with cancers of
the  lung,  liver,  spine,  kidney,  pancreas  tumors  and

oligometastatic  disease.  Typically,  SBRT  involves  the
delivery of one or a few large dose fractions of 5 to 30 Gy
per  fraction  (usually  applied  at  1  to  5  dose  fractions).
Variations of SBRT include a single relatively large dose
RT, i.e. single fraction radiotherapy (SFRT), or more than
one dose or hypo-fractioned radiotherapy (HFRT). The
latter being a major paradigm (usually no less than 5.0 Gy
per fraction) shift from conventional fraction radiotherapy
(CFRT) which  delivers  several  fractions  of  small  doses
ranging from 1.8 to 3.0 Gy.

While normal blood vessels aid the delivery of oxygen,
nutrients and immune cells to every part of body, abnormal
microvasculature within tumors play a critical role in its
growth. Pro-angiogenic overwhelm anti-angiogenic factors
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resulting in  the  proliferation and migration of  vascular
endothelial  cells  (ECs)  resulting  in  abnormalities  in
organization,  structure  and  function  of  the  tumor
microvasculature.  The  excessive  ECs  and  abnormal
perivascular cells become disorganized and form dilated,
tortuous, hyperpermeable and dysfunctional microvessels.
This impedes immune cell migration and function during
angiogenesis,  and  makes  the  tumor  more  likely  to
metastasize.  This  abnormal  microvasculature with poor
transportation efficiency causes hypoxia, acidosis and high
interstitial fluid pressure in tumors.

Here, we review the negative effects of abnormal tumor
microvasculature on SBRT and comb through literature for
a better understanding of the relationship between SBRT
and microvasculature in tumors, and end by discussing the
combination of SBRT with anti-angiogenesis (AA) agents
for cancer treatment in preclinical  and clinical  practice,
examining the current situation of this combination therapy
in anti-tumor treatment.

Microvasculature in tumor

Folkman  in  1971  hypothesized  that  the  most  common
pathway for new microvessel development in malignancy is
angiogenesis.  Under  physiological  conditions,  pro-
angiogenic factors and anti-angiogenic factors maintain a
dynamic balance during the normal development of blood
vessels.  However,  in  malignant  tumors,  this  balance  is
perturbed by hypoxia.  Excessive  pro-angiogenic  factors
induce abnormal growth of microvessel, which results in
poor transportation efficiency and intensifying hypoxia and
acidosis within the tumor microenvironment.

Hypoxia had long been identified as a direct negative
factor  for  RT  since  irradiation  is  dependent  on  the
existence of molecular oxygen (O2) for its cytotoxic effects.
In hypoxic microenvironments, free-radicals mediate DNA
damage, since O2 is necessary to produce DNA damaging
free radicals produced by irradiation (1). Previous studies
have  proven  that  the  linear-quadratic  (LQ)  model
overestimates  tumor  cell  killing  by  SFRT/HFRT  by
20%–50%  (2,3) .  The  dif ferentia l  propert ies  of
SFRT/HFRT and CFRT on subpopulations of  hypoxic
cells  are  the  reason for  this  overestimation (3).  Several
cellular and molecular processes caused or intensified by
hypoxia, including but not limited to, induction of cancer
“stem  cell”  phenotype,  tumor  growth  and  genomic
instability, epithelial to mesenchymal transition, invasion
and  metastasis,  have  been  identified  to  affect  tumor
treatment modalities when subjected to RT (4).

Microvasculature response to SFRT/HFRT/AA
agents in preclinical tumor models

It remains unclear that with a similar biologically effective
dose (BED) in LQ models, SFRT/HFRT kills fewer tumor
cells directly compared to CFRT because of hypoxia, while
SFRT/HFRT achieves  better  local  control  than CFRT
(2,3).  One thought  is  that  microvessels  may respond to
SFRT/HFRT,  which  enhance  the  anti-tumor  effect  of
irradiation.

In 2003, Garcia-Barros and his group discovered that
high-dose SFRT (more than 8–11 Gy) facilitates apoptosis
of ECs in a dose-dependent manner and normalize tumor
vasculature (5). Then Fuks et al. observed that EC damage
appears  to  be  induced  by  both  SFRT and  CFRT.  The
different  outcomes  after  irradiation  between  these  two
approaches may lie in the fact that EC apoptosis contribute
significantly  to  tumor  cell  lethality  in  SFRT  and  EC
damage induced by low-dose exposure of CFRT. This does
not enhance tumor cell death effectively, as death signaling
pathways in ECs are repressed by concomitant activation of
tumor cell hypoxia inducible factor-1 (HIF-1) (6). A recent
study came to the conclusion that using a pancreatic tumor
model,  irradiation with SFRT (24 Gy/1 fraction)  could
cause temporary vascular  dysfunction and expression of
HIF-1 (7). Lan et al. confirmed that SFRT/HFRT (both 12
Gy/1  fraction  and  12  Gy/3  fractions)  could  reduce
microvessel  density  (MVD) significantly  in  Lewis  lung
carcinoma (LLC) models (8).  These results suggest that
SFRT/HFRT  may  reduce  MVD  and  normalize  tumor
microvasculature. However, more evidence is needed to
explain the difference in mechanism in ECs responding to
CFRT and SFRT/HFRT.

Compared to SFRT/HFRT, the mechanism of MVD
reduction and microvessel normalization of AA agents in
tumor is more explicit. AA agents can inhibit angiogenesis,
normalize  microvasculature  and  alleviate  hypoxia  by
increasing vascular pericyte coverage, and reducing tumor
hyperpermeability, vessel calibers, hypoxia and interstitial
fluid pressure. Normalization of blood vessels occurs when
there is a “window of opportunity” (4,9-11). An increase in
transient perfusion during the acute phase (1 to 3 days after
medicine  infusion)  progressively  decreased  tumor
microvessel density on the 5th to 7th day post-AA agent
therapy,  resulting  in  decreased  blood  perfusion  (9,12).
Duration  of  this  “window”  is  dependent  on  dose  and
potency of AA therapy.

In  addition,  microvessels  may  play  a  role  in  post-
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SFRT/HFRT tumor progression. Lan et al. observed that
tumor MVD increased along with tumor regrowth after 3
weeks  of  a  single  dose  of  12  Gy  irradiation  (8).
Furthermore, irradiated tumors secrete various cytokines to
inhibit  apoptosis  in  ECs,  thereby  preventing  vascular
damage and impairing the anti-tumor effects of irradiation.
HIF-1  regulates  cytokines  such  as  vascular  endothelial
growth factor (VEGF), which have been shown to weaken
the effects of RT (13). Moreover, irradiation (6 Gy, single
dose) upregulates endothelial nitric oxide synthase (eNOS)
expression and activity. This activates the nitric oxide (NO)
pathway in ECs.  NO signaling post-irradiation induces
profound transformation of the EC phenotype to generate
tumor  angiogenesis  (14).  Moreover,  post-irradiation
microvessels  regrowth may be triggered by irradiation-
induced and caspase-3-mediated cell death in both human
colon cancer and human glioma xenografts (15,16).

It is still controversial whether ECs originate from bone
marrow-derived  cel ls  is  the  key  process  in  the
revascularization  of  post-irradiated  tumors.  In  certain
murine and human tumors,  an increase  in  intratumoral
SDF-1/CXCR4 pathway is activated by irradiation. This
recruits myeloid-derived monocytes, particularly tumor-
associated  macrophages,  which  subsequently  promote
tumor regrowth (17,18). Further investigations indicated
that  myeloid-derived  monocytes,  recruited  post-RT in
glioblastomas facilitate vasculogenesis but not angiogenesis,
which  subsequently  results  in  tumor  re-growth  (19).
However, Kozin suggested that although tumor-associated
macrophages and certain subgroup of monocytes promote
post-RT tumor revascularization, some ECs in growing
tumors may be derived from cancer stem-like cells through
trans-differentiation (20).

AA agents may be more effective for the treatment of
post-HFRT relapsing tumors than HFRT-naive tumors in
human tumor xenograft models (21). Various cytokines and
cells have been demonstrated to play a role in regulating
angiogenesis after SFRT/HFRT, which supports the use of
AA agents for improved efficacy.

Effects of SFRT/HFRT/SBRT with AA agents in
preclinical and clinical studies

As mentioned earlier, SFRT/HFRT kills fewer tumor cells
than  CFRT  due  to  the  hypoxic  microenvironment  in
tumors.  AA  agents  may  alleviate  hypoxia  to  improve
sensitivity of tumor cells to irradiation. Combination of AA
agents might be effective with SBRT where microvessel
redistribution  plays  an  important  role  in  post-SBRT

relapse.  From another aspect,  SBRT itself  could reduce
MVD and normalize microvessels in tumor. Therefore, it is
important  to  explore  whether  a  synergistic  effect  exists
using a  combination of  SBRT and AA agents.  This  has
been tested in various preclinical and clinical studies.

Efficiency of SFRT/HFRT with AA agents in preclinical
research

Using the preclinical LLC model, VEGF was induced after
exposure  to  RT.  Pre-treatment  with  angiostatin  or  a
VEGF-neutralizing  antibody  before  HFRT  (20  Gy/2
fractions) was associated with a synergistic than an additive
anti-tumor effect (22,23). Endostatin, an anti-angiogenic
factor,  showed  disparate  effects  on  tumor  growth  and
hypoxia  between  high  (MCa-35)  and  low  (MCa-4)
vascularized murine mammary carcinomas. The poorly-
vascularized tumor (MCa-4) responded better to endostatin
therapy than the highly-vascularized tumor (MCa-35) (22-
24). In a follow-up study, the team found that in MCa-4
models, a combination of HFRT (6 Gy/5 fractions) and a
monoclonal antibody against vascular endothelial growth
factor  receptor  2  (VEGFR2;  DC101)  inhibited  tumor
growth  significantly  when  compared  to  the  MCa-35
models (25). In addition, hypoxia-activated chemotherapy
or using a HIF-1α inhibitor enhanced the effect of SFRT
(8 Gy or 10 Gy/1 fraction) in sarcoma models (26,27). Gao
et  al.  determined that bevacizumab radiosensitizes non-
small cell lung cancer (NSCLC) xenografts by inhibiting
the repair  of  DNA double-strand break in ECs and re-
norma l i ze s  the  tumor  mic rova scu l a tu re  (28 ) .
Supplementing this observation, several other AA agents
have been noted to enhance the effects of SFRT/HFRT
(12,28-33).

Efficacy of  combined SBRT with AA agents  in clinical
trials

Nearly 100 clinical  trials  evaluating the combination of
CFRT and AA agents have been performed over the last
decade. The majority of these were phase I or II trials with
most  ending  with  disappointing  results.  However,  two
recent  phase  III  trials  (AVAGLIO  and  RTOG0815)
demonstrated that bevacizumab improved progression-free
survival (PFS) (AVAGLIO: 11 vs. 6 months; RTOG0815:
11 vs. 7 months) but not overall survival (OS) (AVAGLIO:
both 17 months; RTOG0815: both 16 months) with CFRT
(60 Gy/30 fractions) in patients with glioblastoma (34,35).

These trials raise the potential for combining AA agents
with SBRT in the clinic. Although a number of AA agents,
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mainly targeting VEGF or VEGFR, have been tested with
or without chemotherapy in clinical practice, these agents
were seldom combined with SBRT in phase III  clinical
trials.

Bevacizumab together with SRS/HFRT + temozolomide,
achieved a PFS of 10.0–14.3 months and an OS of 16.3–
19.0 months when used as a first line of therapy against
glioblastoma  multiforme  (GBM)  (36,37).  Because
irradiation-induced necrosis is higher in HFRT/SRS than
CFRT and bevacizumab may reduce vascular permeability,
rapidly  reducing  peritumoral  edema  and  alleviating
subsequent radiation necrosis, bevacizumab may amplify
the  effect  of  SBS  in  GBM  (38).  Two  phase  II  clinical
trials  in  newly  diagnosed  GBM  patients  compared
“bevacizumab + HFRT + temozolomide” and “HFRT +
temozolomide”  and  concluded  that  bevacizumab  in
combination therapy did  not  prolong PFS (12.8  vs.  9.4
months, P=0.58) or OS (16.3 vs. 16.3 months) (39). The
results did however indicate that bevacizumab offset the
development of symptomatic radiation necrosis in small
volume tumors (36), but it did not act as a radio-protective
factor to these patients with large tumors after HFRT (37).

In two phase III trials (AVAGLIO and RTOG0815) in
patients with newly diagnosed glioblastoma, using “CFRT
(60  Gy/30  fractions)  +  bevacizumab  +  temozolomide”
achieved the median PFS of 11 months for both and the
median  OS  of  16–17  months.  When  the  trials  used
HFRT/SBRT instead of CFRT (60 Gy/30 fractions), it did
not make a significant difference in PFS or OS (16.3–19.0
months) (34,35).

After the initial radiation to the tumor bed, 72%–93% of
GBM patients relapsed (40). The use of the combination of
bevacizumab  and  HFRT  (30  Gy/5  fractions)  achieved
promising outcomes in previously heavily treated GBM
patients  with  the  median  tumor  volume of  34  cm3:  the
overall response rate (ORR) was 50%, the 6-month PFS
was 65%, and the median OS was 12.5 months (41). This
trial  provided a  choice for  GBM patients  who relapsed.
These outcomes were better than previous retrospective
and  prospective  studies  using  either  HFRT  or  CFRT
without  AA  agents,  excepting  the  trials  that  recruited
patients with much smaller tumor volumes (42). In a single-
institution  retrospective  study  of  high-grade  glioma
patients  treated  with  CFRT (36  Gy/18  fractions)  with
concurrent bevacizumab, the OS (12.1months) appeared to
be similar when compared with those who received HFRT
with  bevacizumab,  better  than  that  of  CFRT  alone  or
CFRT with concurrent temozolomide (8.0 months) (43).
However,  this  retrospective  study  did  not  provide  the

target  tumor volume,  which is  a  recognized prognostic
factor. Additional studies are needed to confirm this.

Oligometastasis  (defined  as  five  or  less  clinically
detectable  metastatic  lesions  from  any  primary  site)
signifies a limited tumor burden that is potentially curable
with appropriate local treatment. The use of SBRT could
benefit patients with liver or lung oligometastatic disease
(44,45). Sunitinib in combination with SBRT has been used
to treat  patients  with oligometastasis  of  head and neck,
liver, lung, kidney and prostate tumors. Sunitinib combined
with SRS to treat intracranial oligometastasis resulted in
shorter median PFS than with SBRT to the extracranial
lesions (4.8 vs. 12.2 months) (46-48). On the other hand,
when compared with the results of a phase Ib trial for brain
CFRT + sunitinib, the median PFS was 5 months, and the
median OS was 8.8 months (49). We could infer that using
SBRT or  CFRT to  brain  did  not  make  a  difference  in
combination with sunitinib. Presumably, these combination
trials involved different types of tumors, since sunitinib, as
a single agent, was ineffective at controlling extracranial
disease. The small sample size and possible biases may have
led to misinterpretation of the results. In fact, patients with
a large tumor burden were associated with worse survival
prognosis when treated with SBRT alone. Patients with
kidney or prostate primary carcinoma suggested improved
OS when treated with SBRT and sunitinib (47,50).

Since sorafenib alone has been verified to improve the
PFS and  OS of  patients  with  hepatocellular  carcinoma
(HCC)  (51),  it  has  been  hypothesized  that  combining
sorafenib and SBRT may increase the efficacy in patients
with HCC or liver metastases. A phase I clinical trial, using
“SBRT  +  sorafenib”  in  HCC  patients,  reported
prematurely  because  of  unacceptable  toxicities  with  an
estimated median PFS (12.1 months) and estimated median
OS (26.3 months)  (52).  However,  earlier  phase I  and II
trials carried out using SBRT alone in HCC patients had a
median  PFS  of  6.0  months  and  a  median  OS  of  17.0
months (53). Another phase II clinical trial that used CFRT
(40–60 Gy/20–30 fractions)  with  sorafenib  in  advanced
HCC patients resulted in an ORR of 55%, a median PFS
of 8.6 months and a median OS of 14 months (54). Two
other clinical trials in patients undergoing SBRT with or
without  sorafenib  for  liver  metastases  indicated  no
differences in ORR (47% vs. 49%) nor median OS (20.9 vs.
17.9 months) (55,56).

Toxicities in clinical practices

In general, SBRT with AA agents had a moderate effect for

150 Sun et al. Combination SBRT with AA agents

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2018;30(1):147-156



certain tumors,  such as  heavily treated GBM, renal  cell
carcinoma and prostate carcinoma (41,47). However, grade
4 toxicities were seldom observed in patients receiving AA
agents with CFRT, while the combination of AA agents
and SBRT had much higher rates of serious toxicities (56-
58). These toxicities were also observed in SBRT/SRS/AA
agents alone or in combination therapy. These severe and
relatively  high-frequency  toxicities  are  particularly
gastrointestinal and hepatic toxicities in combination of
SBRT with AA agents.  Additional studies are needed to
determine whether any particular agent is safer to use with
SBRT than others.

Large doses of irradiation could cause damage to normal
adjacent tissue. This usually results in severe inflammation,
pain,  dysfunction,  radioactive  gastritis,  esophagitis,
pneumonitis, liver dysfunction and intracranial radiation
necrosis (45,55,59). Radioactive pneumonitis may progress
to pulmonary fibrosis without effective anti-inflammatory
treatment. Radionecrosis is due to SRS and usually occurs 6
months  after  irradiation.  In  a  clinical  trial  using SBS +
bevacizumab in GBM patients with large tumor volumes
[median  planning  target  volume  1  (PTV1)  of  131  cm],
there was an unexpected high risk of radionecrosis, which
developed in 30 out of 35 patients. However, the incidence
of radionecrosis in patients receiving CFRT + bevacizumab
has not been reported for the two phase III trials (34,35).

AA agent-associated toxicities are numerous and mainly
consist of cardiovascular and non-cardiovascular toxicities,
which  depend  on  the  category  of  AA  agents  used.
Hypertension and thromboembolic diseases are common
cardiovascular toxicities induced by AA agents, while others
include myocardial ischemia, left ventricular dysfunction
and prolongation of the QT interval. Non-cardiovascular
adverse  effects  include  proteinuria,  gastrointestinal
toxicities,  delayed  wound  healing,  fatigue,  stomatitis,
thyroid  dysfunction,  myelosuppression,  dysphonia  and
cutaneous  effects.  Additional  rare  or  agent-specific
toxicities include reversible posterior leukoencephalopathy,
microangiopathic  hemolysis,  osteonecrosis  of  the  jaw,
hypoglycemia and pancreatic enzyme elevations.

Bevacizumab induces more gastrointestinal toxicity than
other AA agents (60). This may be due to bevacizumab’s
ability  to  form immune complexes  and  induce  vascular
inflammation and clotting. Gastrointestinal toxicities are
significantly reduced with a multi-fraction regimen (25–45
Gy in 3–5 fractions with median BED3 of 105.6 Gy; range,
66.7–180.0 Gy) compared with a single fraction (25 Gy in 1
fraction or BED3 of  233.3 Gy) for SBRT in pancreatic

tumor (61). Thus, adopting HFRT in addition to SFRT,
and  using  the  lowest  BED,  which  provides  high  local
control,  and  establishing  an  optimal  dose  should  be
investigated  for  concurrent  or  possible  sequential  AA
therapy.

The  most  common grade  ≥3  non-surgery-associated
toxicities are diarrhea (12%, 6/50), pulmonary embolisms
(12%, 6/50)  when using “bevacizumab + capecitabine +
oxaliplatin + HFRT (5 Gy/5 fractions)” as a neoadjuvant
scheme for metastasized rectal carcinoma (62). However,
when  HFRT is  replaced  by  CFRT in  this  neoadjuvant
scheme, grade ≥3 toxicities were substantially reduced with
only 2 of 55 patients developing deep vein thrombosis but
having  similar  rates  of  diarrhea  (12.7%,  7/55)  (63).
Lymphopenia (36%, 9/25), thrombocytopenia (12%, 3/25)
and hyponatremia (24%, 6/25) were common toxicities for
combination of bevacizumab + HFRT (6 Gy/5 fractions)
for recurrent gliomas (41). A retrospective study found that
esophageal fistula was a rare complication (5.8%, 3/52) in
patients  with  irradiated  volume  within  2  cm  of  the
esophagus. The fistulas occurred only when doses exceed
51 Gy and were only observed in the patients treated with
AA agents post SBRT (64). Most of these hematopoietic
toxicities were reversed by effective medication. Other rare
toxicities  observed  were  renal  failure,  wound  healing
complications,  infections,  ischemic  stroke  and  central
nervous system bleeding.

Sunitinib  seems  to  be  associated  with  less  serious
toxicities than bevacizumab. Patients with oligometastasis
irradiated  with  SBRT  experienced  grade  ≥3  toxicities
including  anemia  (5.4%,  3/56),  neutropenia  (10.7%–
14.3%, 6/56 and 2/14), thrombocytopenia (12.5%, 7/56),
bleeding  (5.4%,  3/56),  liver  function  test  abnormality
(5.4%, 3/56), metabolic abnormality (3.6%, 2/56), fatigue
(35.7%, 5/14), lymphopenia, rash, mucositis and hemolysis
(7.1%, 1/14) (46,47).

Sorafenib with SBRT, used in hepatic  metastasis  and
HCC patients, manifested the unexpected rapid reduction
of liver volume (52,58). It might necessitate individualized
assessments for probable liver volume reduction prior to
SBRT  in  pat ients  taking  sorafenib.  Signif icant
gastrointestinal  toxicit ies  experienced  with  this
combination  may  be  attributed  to  gastrointestinal
structures receiving larger doses of irradiation than planned
because  of  l iver  deformation  (58,65).  However,
combination of sorafenib with CFRT revealed acceptable
toxicities, with 7.5% (3/40) of patients experiencing diarrea
and 5.0% (2/40) suffering from impaired liver function,
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which  subsequently  lead  to  sorafenib  reduction  or
discontinuation (54).

It is undetermined whether a “wash-out” period should
be observed between AA therapy and SBRT. Presumably, a
“wash-out” period after radiation is dependent on the half-
life of the specific AA agent. The optimal timing, duration
and dosing of AA agents when combined with SBRT also
remain  unknown.  It  is  however  not  recommended that
concurrent sorafenib with SBRT be a strategy for further
clinical  testing  in  patients  with  locally  advanced  HCC,
particularly with irradiation of a large area of the liver (52).
Sequential SBRT plus sorafenib (half dose for the first 4
weeks)  in  RTOG  1112  in  locally  advanced  HCC  is  a
strategy  being  currently  investigated.  Table  1  lists  the
outcomes  of  completed  clinical  trials  testing  the
combination of AA agents with SBRT.

Results  of  a  search  in  “clinicaltrials.gov”  using  the
phrases,  “stereotactic  body  radiation  therapy”  or

“stereotactic  ablative  radiotherapy”  or  “stereotactic
radiosurgery” for completed, not completed or terminated
clinical trials involving both SBRT and AA agents are listed
in Table 2. However, it is too early to conclude whether AA
agents synergize the cytotoxicity of SBRT.

Summary and perspective

More compact evidence is needed to confirm and optimize
the combination of SBRT and AA therapy, as well as to
determine optimal timing, dose and washout periods.  A
number  of  clinical  trials  are  underway  to  answer  these
questions. Although preclinical models have indicated that
SBRT with AA agents has a synergistic effect on efficacy,
the  treatment  tends  to  induce  more  adverse  events
compared  to  CFRT  with  AA  agents.  Due  to  the  small
number of patients with successful outcomes, subsequent
clinical  trials  may  need  to  be  more  selective  when

Table 1 Reported clinical trials on combination of SBRT and AA agents

Trial Type of tumor
SBRT (dose/

fraction)
AA agent

Chemotherapy
with

combined

Line of
therapy

Phase of
trial/No. of
patients

Toxicity
(grade ≥4)

Median
PFS

(month)

Median OS
(month)

Omuro
et al. (36)

Glioblastoma 36 Gy/6 f
Bevacizumab,
10 mg/kg, d1,

d15
Y 1st II/40 Y 10 19

Ney
et al. (37)

Glioblastoma 60 Gy/10 f
Bevacizumab,
10 mg/kg, d1,

d15
Y 1st II/25 Y 14.3 16.3

Gutin
et al. (41)

Malignant
gliomas

30 Gy/5 f
Bevacizumab,
10 mg/kg, d1,

d15;
N ≥2nd II/25 Y

GBM:
7.3; AG:

7.5

GBM: 12.5;
AG: 16.5

van Dijk
et al. (62)

Metastatic Rectal
Cancer

25 Gy/5 f
Bevacizumab,
7.5 mg/kg, d1

Y Neoadjuvant II/50 Y 13 N/A

Tong
et al. (48)

Oligometastases 50 Gy/10 f
Sunitinib, 37.5
mg qd, 28 d,

N ND II/25 Y 12.2 14.1

Kao
et al. (47,66)

Oligometastases 40–50 Gy/10 f
Sunitinib,

37.5–50 mg qd,
28 d

N ND I/21 Y 4.6 N/A

Ahluwalia
et al. (46)

Brain
oligometastases

SRS
Sunitinib,

37.5–50 mg qd,
28 d

N
1st for brain
metastases

II/14 N 4.8 11.7

Swaminath
et al. (58)

Liver metastases/
HCC

Focal: 33–54
Gy/6 f; Diffuse:

21.6 Gy/6 f

Sorafenib,
400–600 mg qd

N ND I/15 Y N/A N/A

Goody
et al. (56)

Liver metastases 30–60 Gy/6 f
Sorafenib,

200–400 mg
bid

N ND I/17 Y 2.9 22.3

Brade
et al. (52)

HCC 30–50 Gy/6 f
Sorafenib,

200–400 mg qd
or bid

N ND I/16 Y 20.5* 26.3*

SBRT, stereotactic body radiotherapy; AA, anti-angiogenesis; PFS, progression-free survival; OS, overall survival; Y, yes; N, no; GBM,
glioblastoma multiforme; AG, anaplastic gliomas; N/A, not available; ND, not demanded; SRS, stereotactic radiosurgery; HCC, hepatocellular
carcinoma; *, estimated value.
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recruiting patients. We have listed some of the reasons why
combined  therapy  has  not  achieved  greater  success  in
clinical practice to date as follows:

Firstly,  only limited RT clinical  trials  and even fewer
SBRT trials have been conducted. Of the 200 clinical trials
supported  by  the  American  National  Cancer  Institute
(NCI), only 11 involved RT (67). Nevertheless, brighter
prospects  lie  ahead  as  a  new  era  dawned  with  hypo-
fractionation in general, and SBRT in particular, promising
to give RT an edge over other cancer therapies.

Secondly, experimental designs and animal models need
to be improved. In general, tumors in animal models are
simple at genetic level and grow so rapidly that they tend to
be more sensitive to AA agents than corresponding tumors
in  humans.  Improvement  of  patient-derived  xenograft
models  depends  on  the  evolution  of  more  humanized
immune  system  in  mouse.  Thus,  the  findings  with
preclinical  models  may not  corroborate  with  treatment
setting in clinical practices (4).

Thirdly,  safety  should  be  given  particular  attention.
Combined treatment  may cause  significant  side  effects,
including prominent gastrointestinal or hepatic toxicities
and other severe potential adverse reactions.

In the near future, more clinical trials on SBRT and AA
combination therapy will reveal the benefit to patients with
certain types of cancer. In addition, personalized medicine
is warranted since tumor heterogeneity within a patient can
lead to varied responses to combination therapy.
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