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Abstract

Programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) blockade has shown promising effects in

cancer immunotherapy. Removing the so-called “brakes” on T cell immune responses by blocking the PD-1/PD-

L1 check point should boost anti-tumor immunity and provide durable tumor regression for cancer patients.

However, 30%–60% of patients show no response to PD-1/PD-L1 blockade. Thus, it is urgent to explore the

underlying resistance mechanisms to improve sensitivity to anti-PD-1/PD-L1 therapy. We propose that the

mechanisms  promoting  resistance  mainly  include  T  cell  exclusion  or  exhaustion  at  the  tumor  site,

immunosuppressive factors in the tumor microenvironment (TME), and a range of tumor-intrinsic factors. This

review highlights the power of studying the cellular and molecular mechanisms of resistance to improve the rational

design of combination therapeutic strategies that can be translated to the clinic. Here, we briefly discuss the

development of PD-1/PD-L1 blockade agents and focus on the current issues and future prospects for potential

combinatorial therapeutic strategies that include anti-PD-1/PD-L1 therapy, based upon the available preclinical

and clinical data.
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Introduction

The programmed cell death 1 (PD-1) pathway has become
an attractive therapeutic target in numerous cancers (1).
PD-1 was first characterized as a marker of apoptosis, and
is  now known as  an important  immune checkpoint  that
regulates  T cell  function.  PD-1  is  widely  expressed  on
tumor-infiltrating  lymphocytes  (TILs),  particularly  on
exhausted  T  cells  (2).  Its  ligand,  programmed  death  1
ligand (PD-L1), is mainly expressed on cancer and immune
cells, such as dendritic cells (DCs), macrophages, myeloid-
derived  suppressor  cells  (MDSCs),  and  B  cells  (3).

Mechanistic  studies  have  shown  that  PD-1/PD-L1
signaling  can  inhibit  the  activation  of  T cells  and  thus
suppress  their  proliferation,  migration,  and  effector
function by delivering a co-inhibitory signal (4-6). It has
been reported that CD8+ T cells often become exhausted
when  entering  a  suppressive  tumor  microenvironment
(TME) (7), and exhausted CD8+ T cells are characterized
by overexpression of multiple inhibitory receptors, such as
PD-1,  cytotoxic  T-lymphocyte-associated  protein  4
(CTLA-4), T-cell immunoglobulin mucin-3 (TIM-3), and
lymphocyte activation gene 3 (LAG-3), as well as impaired
effector cytokine production and cytolytic activity, leading
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to the failure of cancer elimination (8). Antibody-mediated
blockade of these inhibitory receptors and their ligands
have yielded breakthrough immunotherapies for numerous
cancers (9).

Inhibitors  targeting  PD-1  and  PD-L1  have  shown
impressive  anti-tumor  effects  and  clinical  benefits  in  a
subset  of  patients  (10).  Food and  Drug Administration
(FDA) has approved various anti-PD-1/PD-L1 monoclonal
antibodies  (mAbs)  for  the  treatment  of  metastatic
melanoma, renal cell carcinoma (RCC), non-small cell lung
cancer (NSCLC), bladder cancer, recurrent or metastatic
head  and  neck  cancer,  refractory  classical  Hodgkin
lymphoma, microsatellite instability (MSI)-high colorectal
cancer  (CRC),  and  metastatic  Merkel  cell  carcinoma.
Despite  these  unprecedented  successes,  most  patients
experience  intrinsic  resistance,  and  even  responding
patients  can  develop  acquired  resistance  to  anti-PD-1
therapy (11). Numerous studies are currently underway to
systematically elucidate the mechanisms underlying this
resistance.  Here,  we  summarize  the  major  resistance
mechanisms:  1)  T  cell  exhaustion  at  the  tumor  site;  2)
exclusion  of  pre-existing  T  cells  or  TILs;  3)  the
immunosuppressive TME formed by suppressive cells and
inhibitory molecules and 4) tumor-intrinsic factors, such as
oncogenic signaling pathways,  PD-L1 expression levels,
t u m o r  i m m u n o g e n i c i t y ,  e x p r e s s i o n  o f  m a j o r
histocompatibility complex class I (MHC-I) molecules and
immunosuppressive  metabolites.  Therefore,  exploring
effective combinatorial approaches to recover sensitivity in
PD-1  blockade-resistant  patients  is  attracting  research
directions. Herein, we briefly review the development of
PD-1 pathway, discuss the current limitations of anti-PD-
1/PD-L1  therapies,  and  then  focus  on  potential
combinatorial  strategies,  aiming  to  guide  future
combination trials  that  might yield better outcomes for
cancer patients.

Discovery of PD-1 and its ligands

In  1992,  Ishida  et  al.  isolated  the  cDNA  of  PD-1  and
identified PD-1 as a marker of classical programmed cell
death  (apoptosis)  (12).  Subsequent  mechanistic  studies
identified PD-1 as a negative regulator of T cell immune
responses,  which  also  played  a  role  in  preventing
autoimmune diseases (13). In 2000, B7 homolog 1 (B7-H1,
also called PD-L1 or CD274), a member of the B7 family
of  costimulatory molecules,  was confirmed as  a  specific
ligand of PD-1 (14). Similar to PD-1-deficient mice, PD-

L1-deficient  mice  exhibited  immune  activation  and
autoimmune diseases (14).  PD-L1 was shown to deliver
inhibitory signals by binding to CD80 on activated T cells
(15). In addition to PD-L1, programmed death ligand 2
(PD-L2) was also demonstrated to be a second ligand of
PD-1 that is expressed by DCs, macrophages, and some
cancer  cells.  Interaction  of  PD-L2  with  PD-1  also
mediated  potent  inhibitory  signals  to  hinder  the
proliferation and function of T effector cells (16). PD-L2
was also reported to be involved in inducing respiratory
tolerance  through  interaction  with  repulsive  guidance
molecule  family  member  b  (RGMb),  which  is  highly
expressed  on  lung  macrophages  (17).  Collectively,
interaction  of  PD-L1  with  PD-1  suppresses  the  initial
activation and effector function of T cells, and blocking
PD-1/PD-L1  pathway  would  enhance  T  cell  immune
responses.

Interaction of PD-1 with PD-L1 in the TME

In  2002,  Dong  et  al.  first  reported  the  role  of  PD-1
pathway in promoting T cell apoptosis in the TME (18).
Subsequent studies demonstrated that interaction of PD-1
with PD-L1 attenuated T cell migration, proliferation, and
cytotoxic capacity (4-6) (Figure 1). Interestingly, a recent
study revealed a novel role of PD-1 in cancer progression;
PD-1-positive  tumor-associated  macrophages  (TAMs)
could attenuate tumor immunity by inhibiting phagocytosis
(19). The major mechanism by which PD-1/PD-L1 limited
the host  immune response was through upregulation of
their expression in the TME, and elevated PD-1 expression
was detected on TILs, particularly tumor antigen-specific
T  cells,  which  was  presumably  induced  by  chronic
antigenic stimulation (2). PD-L1 can be highly expressed
by tumor cells  and tumor-associated antigen-presenting
cells  (APCs)  (3),  and  the  levels  of  PD-L1 expressed  by
tumor  cells  can  be  regulated  by  various  mechanisms
(Figure  1).  One  of  these  mechanisms  may  involve
inflammatory cytokines,  especially  interferon-γ  (IFN-γ)
(20). Another mechanism is aberrant expression of tumor-
intrinsic  signaling  pathways  during  carcinogenesis,
including activation of epidermal growth factor receptor
(EGFR), mitogen-activated protein kinase (MAPK), and/or
PI3K-Akt signaling pathways, and upregulation of signal
transducer  and activator  of  transcription 3 (STAT3) or
hypoxia induced factor 1 (HIF-1) (21,22). PD-L1-positive
cells not only inhibited T cell survival and function but also
improved  the  suppressive  activity  of  DCs  (23)  and  T
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regulatory cells (Tregs) (24). Additionally, PD-L1 delivered
an  anti-apoptotic  signal  to  tumor  cells  through  its
interaction  with  PD-1  and  protected  tumor  cells  from
attack by cytotoxic T lymphocytes (CTLs) (25). PD-1/PD-
L1 blockade has been shown to recover the survival and
function of  T cells  and increase  their  tumor migration,
significantly  reinvigorating  their  anti-tumor  immunity
(26,27). In summary, PD-1/PD-L1 pathway could be used
as a therapeutic target based on its immunosuppressive role
in the TME, and thus modulating PD-1/PD-L1 pathway
could remodel the immunosuppressive microenvironment.

Anti-PD-1/PD-L1 agents

Anti-PD-1/PD-L1  mAbs  augment  T-cell  anti-tumor
response by blocking PD-1/PD-L1 interaction. FDA has
approved  the  anti-PD-1  mAb  nivolumab  for  advanced
melanoma, squamous cell carcinoma, metastatic NSCLC,
advanced  kidney  cancer,  Hodgkin  lymphoma,  and
urothelial carcinoma. Pembrolizumab, another anti-PD-1
mAb,  was  approved  by  FDA  for  the  treatment  of
unresectable or metastatic melanoma, advanced NSCLC,
and  MSI-high  CRC.  In  2016,  the  anti-PD-L1  mAb
MPDL3280A was approved by FDA for the treatment of

advanced or metastatic urothelial bladder cancer (UBC).
Clinical trials of another PD-L1 mAb, BMS-936559, have
also been conducted for various advanced cancers (28). The
immune-related adverse events (irAEs) of these anti-PD-
1/PD-L1 mAbs were mostly consistent, including fatigue,
asthenia, pyrexia, myalgia, arthralgia, rash, pruritus, nausea,
vomiting,  colitis,  liver  and  kidney  toxicity,  pneumonia,
dyspnea, anemia, injection-related reactions, and endocrine
disorders.

Limitations of anti-PD-1/PD-L1 therapy

Despite these encouraging clinical results, anti-PD-1/PD-
L1 agents are not always effective. The majority of patients
did not benefit from anti-PD-1/PD-L1 therapy (primary
resistance),  some  responders  relapsed  after  a  period  of
response (acquired resistance) (11), and some patients had
to stop treatment because of  the development of  irAEs.
Here, we summarize the known mechanisms promoting
resistance to anti-PD-1/PD-L1 therapy (Figure 2). First,
emerging  evidence  shows  that  decreased  therapeutic
efficacy can be caused by T cell exhaustion. Upregulation
of alternative immune checkpoints or a lack of effector and
memory epigenetic profile resulted in T cell re-exhaustion

 

Figure 1 The effects of programmed cell death 1 (PD-1)−programmed death 1/2 ligand (PD-L1/2) interaction on T cells. PD-L1/2 is
expressed by tumor cells and antigen-presenting cells (APCs). In tumor cells, PD-L1 expression may be induced by interaction between
IFN-γ and IFN-γ receptor (IFN-γ R), activation of epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK),
and/or PI3K-Akt signaling pathways, and upregulation of signal transducer and activator of transcription 3 (STAT3) or hypoxia induced
factor 1 (HIF-1). Then, interaction of PD-1 with PD-L1 can activate Src homology region 2-containing protein tyrosine phosphatase 2
(SHP2) and inhibit activation of T cell receptor (TCR)/major histocompatibility complex (MHC)-triggered NF-κB, PI3K, or other
signaling pathways, leading to increased apoptosis and impaired T cell function, migration, and proliferation.
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after  PD-1  blockade,  l imiting  the  durabil ity  of
reinvigoration (29,30). Ngiow et al. analyzed the expression
of PD-1 by intratumor CD8+ T cells in anti-PD-1 sensitive
and resistant tumors and identified a threshold for PD-1
expression,  below  which,  release  of  adaptive  immune
resistance could be achieved with anti-PD-1 mAb, whereas
T cells with expressing PD-1 levels above the threshold
were in severe exhausted status and failed to be rescued by
anti-PD-1 therapy (31). As a second mechanism, exclusion
of pre-existing T cells or inadequate T cell trafficking to

the tumor site was identified as a key factor contributing to
resistance to PD-1/PD-L1 blockade.  It  was  shown that
sensitivity to anti-PD-1/PD-L1 therapy required efficient
trafficking of pre-existing CD8+ T cells or effector T cells
(Teffs) to the TME (32). Third, many suppressive factors
were shown to accumulate in the TME, including Tregs,
MDSCs,  TAMs, immature DCs,  and cytokines,  such as
interleukin 6 (IL-6) (33), interleukin 10 (IL-10) (34), and
vascular endothelial growth factor A (VEGF-A) (35), which
affected the clinical efficacy of PD-1/PD-L1 blockade. In

 

Figure 2 Mechanisms of resistance to programmed cell death 1 (PD-1)/programmed death 1 ligand (PD-L1) blockade. PD-1 expression
above the threshold may result in severe exhaustion of T cells, which cannot be rescued by anti-PD-1 monoclonal antibodies (mAbs).
Upregulation of alternative immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin
mucin-3 (TIM-3), lymphocyte activation gene 3 (LAG-3), T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT),
CD96, CD160, B- and T-lymphocyte attenuator (BTLA), and 2B4, accelerated T cell  exhaustion by binding to their ligands,  thus
decreasing the therapeutic efficacy of anti-PD-1/PD-L1 therapy. Suppressive factors, such as interleukin 6 (IL-6), interleukin 10 (IL-10),
TGF-β, vascular endothelial growth factor (VEGF), and reactive oxygen species (ROS) produced by cancer-associated fibroblasts (CAFs),
cancer-associated dendritic cells (DCs), T regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor
cells (MDSCs) can limit the anti-tumor effect of anti-PD-1/PD-L1 therapy by mediating immune suppression. Tumor cell-intrinsic PTEN
loss, JAK1/2 mutation, and activation of PI3K/Akt, WNT-β-catenin, and epidermal growth factor receptor (EGFR) signaling pathways are
closely associated with resistance to anti-PD-1/PD-L1 therapy through alteration of the tumor microenvironment (TME). Downregulation
of major histocompatibility complex class I (MHC-I) molecules impaired the antigen presentation process and limited the antigen-specific
T cell response. Various tumor metabolites, such as adenosine, PEG2, reactive oxygen species (ROS), and indoleamine 2,3-dioxygenase
(IDO), could reduce the T cell anti-tumor response and increase resistance to anti-PD-1/PD-L1 agents.
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addition, many tumor-intrinsic factors were also extensively
associated with the failure of anti-PD-1/PD-L1 therapy,
including upregulation of oncogenic signaling pathways
(36), expression levels of PD-L1 (37), tumor immunogenicity
(3),  expression  of  MHC-I  (38),  and  tumor  suppressive
metabolites, such as indoleamine 2,3-dioxygenase (IDO)
(39) and adenosine (40). Recently, a novel explanation for
therapeutic resistance to anti-PD-1/PD-L1 therapy was
proposed, in which, PD-1+ TAMs capture anti-PD-1 mAbs
on  T  cell  surface  through  specific  Fc/Fcγ  receptor
interactions, and blocking Fcγ receptor before anti-PD-1
mAb administration prolonged the binding of anti-PD-1
mAb to CD8+ TILs and improved the tumoricidal effect in
mice  (41).  Taken  together,  combinatorial  therapies
targeting the PD-1/PD-L1 pathway and the mechanisms of
resistance provide a rationale for sensitizing the resistant
patients.

Potential combinatorial strategies with PD-
1/PD-L1 blockade

Based on the limited therapeutic effect of single anti-PD-
1/PD-L1  therapy,  it  is  urgent  to  explore  effective
combinatorial approaches to overcome anti-PD-1/PD-L1
therapy  resistance  and  provide  insights  into  clinical
applications. Potential therapeutic combinations with PD-
1/PD-L1 blockade are shown in Figure 3. In this section,
the potential  therapeutic  regimes synergizing with PD-
1/PD-L1 blockade are discussed.

Chemotherapy

Some chemotherapeutic  agents  treat  cancers  in  part  by
enhancing anti-tumor immunity in a subset of patients by
eliminating Tregs and enhancing CD8+ T cell responses
(42). However, in some cancer patients, chemotherapeutic
agent-induced  anti-tumor  immunity  prompted  PD-L1
expression  to  foster  an  immunosuppressive  TME  (43).
Activation of PD-1/PD-L1 pathway was reported to confer
tumor  cell  chemoresistance  associated  with  increased
metastasis  (44).  Preclinical  and  clinical  studies  have
confirmed that chemotherapy combined with anti-PD-1
mAb  synergistically  facilitated  anti-tumor  immune
response (45) and improved survival in a subset of patients
(46). In 2017, the American Society of Clinical Oncology
(ASCO) reported that the disease control rate of anti-PD-1
mAb combined with chemotherapy for colon and gastric
cancer was up to 100% (47) and 92% (48),  respectively.

The details  of how chemotherapy, including the agents,
dose and timing, should be used in combination with anti-
PD-1/PD-L1 mAbs warrant further exploration in patients
with different types of cancer.

Radiation therapy (RT)

High-dose  ionizing  radiation  has  been  reported  to
eliminate tumor cells partially depending on anti-tumor
immunity, particularly T cell immune response. Radiation
functions by upregulating MHC-I expression and tumor-
associated  antigen  expression,  thus  enhancing  T  cell
migration,  activating  DCs,  and  diminishing  the
accumulation of Tregs (49). However, RT rarely resulted
in tumor regression at sites distant to the irradiated field,
an immune-mediated response termed the “abscopal effect”
(50). Preclinical studies showed that RT-induced PD-L1
expression might compromise the anti-tumor effect and
lead  to  local  relapse  after  RT  (51).  However,  the
combination  of  anti-PD-1/PD-L1  mAbs  with  RT  was
reported to augment the abscopal effect and promote T cell
anti-tumor  immunity  in  several  tumor-bearing  mouse
models (51,52). Encouraging clinical outcomes have been
observed in patients with metastatic melanoma treated with
RT and anti-PD-1 therapy (53). A new additional target of
this combinatorial therapy is the GAS6/AXL pathway, and
targeting  this  pathway  resulted  in  greater  anti-tumor
immune responses after RT in some cancers (54). Based on
these findings, RT could be used as an adjuvant approach
for anti-PD-1/PD-L1 therapy. However, to translate such
combinatorial therapies into the clinic, further preclinical
and  clinical  studies  are  required  to  detect  the  ionizing
radiation-induced immunogenic factors and optimize the
agents, dose, schedule, location and opportunity.

Targeting T cell exhaustion and exclusion

Adoptive T cell transfusion (ACT)

Accumulating evidence has shown that exclusion of effector
T cells  leads to the failure of cancer regression in most
patients, and ACT was considered as a personalized therapy
that involved administration to the host of highly tumor-
reactive  T  cells  (55).  Various  ACT  therapies,  such  as
chimeric antigen receptor (CAR)-T cell and T cell receptor
(TCR)-T cell transfusion, have shown great clinical benefit
in hematological and solid tumors (56). However, many
patients  do not  response because of  the limited factors,
such as inadequate T cell trafficking, high expression levels
of  inhibitory  receptors,  tumor  metabolism  and  the
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immunosuppressive  TME  (57).  PD-1  was  found  to  be
upregulated  on  the  transferred  TILs,  leading  to  their
dysfunction.  However,  co-administration of  adoptive T
cells with an anti-PD-1 mAb reinvigorated exhausted TILs
and strengthened anti-tumor  immunity  in  lung tumor-
bearing mice (57). A recent study showed that PD-1/PD-
L1-induced resistance compromises the efficacy of CAR-T
cell therapies in solid tumors, and administration of anti-
PD-1 mAb, cell-intrinsic PD-1 shRNA blockade, or a PD-
1  dominant-negative  receptor  restored  the  effector
function  of  CD28  CAR-T  cells  (58).  These  findings
suggest PD-1/PD-L1 blockade as a potential strategy to
enhance the potency of  ACT therapies.  Several  clinical
studies  of  combinations  of  TCR-T cell  or  CAR-T cell
transfusion  with  anti-PD-1/PD-L1  mAbs  are  ongoing
(NCT02858310,  NCT02775292,  NCT03030001,
NCT02873390, NCT02862028, and NCT02926833).

Targeting co-inhibitory molecules on T cells

Apart  from PD-1,  other  checkpoint  molecules,  such  as
CTLA-4  (59),  TIM-3  (60),  LAG-3  (61),  and  T  cell
immunoreceptor with immunoglobulin and ITIM domain
(TIGIT) (62), were also upregulated by exhausted T cells
in some cancer patients. Co-expression of these inhibitory
receptors  probably  aggravated  the  severity  of  T  cell
exhaustion,  and  combined blockade  of  these  inhibitory
molecules is an inspiring strategy for cancer therapy. It has
been reported that CTLA-4 blockade not only enhanced
the effector function of T cells but also eliminated Tregs
and  MDSCs  in  the  TME  (63,64).  Clinical  trials  of
combinatorial treatments with anti-CTLA-4 and anti-PD-
1 agents have demonstrated promising clinical results in
patients  with  advanced  metastatic  tumors,  particularly
melanoma (65). FDA approved this combinatorial therapy
for the treatment of BRAF V600 wild-type unresectable or

 

Figure 3 Potential therapeutic combinations with anti-programmed cell death 1 (anti-PD-1)/programmed cell death 1 ligand (PD-L1)
therapy. Anti-PD-1/PD-L1 therapy combined with various strategies targeting the main mechanisms of resistance, including T cell
exclusion or exhaustion at the tumor site, multiple immunosuppressive factors in the tumor microenvironment (TME), and a range of
tumor-intrinsic factors, which become attractive research directions and may yield synergistic or additive clinical outcomes.
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metastatic  melanoma.  However,  superimposed  toxicity,
abnormal  response  patterns,  and  other  serious  adverse
events  were  observed.  Thus,  sequential  treatment  with
anti-PD-1/PD-L1 mAbs followed by anti-CTLA-4 mAbs
needs to be carefully considered.

Combinatorial targeting of PD-1 and the TIM-3 (60),
LAG-3 (61) and TIGIT (62) was shown to synergistically
recover exhausted T cells and enhance anti-tumor effects in
some types of cancer. A new triple therapy of anti-TIM-3,
anti-PD-1, and radiation for human glioblastoma showed
100% overall survival (OS) (66). The safety and efficacy of
dual PD-1 and TIM-3 blockade along with cancer vaccines
in patients with advanced melanoma have been tested in a
phase I  clinical  trial  (67).  In addition,  several  novel  co-
inhibitory receptors involved in CD8+  T cell exhaustion
have been identified, such as CD96 (68), 2B4 (CD244) (69),
CD160 (70), and B- and T-lymphocyte attenuator (BTLA)
(71),  and  blocking  them  could  partially  restore  T  cell
function and/or expansion and might enhance anti-tumor
immunity (69-71).  Collectively,  combinatorial  targeting
PD-1/PD-L1 and alternative checkpoints on T cells have
great  potential  for  T-cell  based  immunotherapy,  and
several  clinical  trials  are  ongoing  (NCT02817633,
NCT02608268,  NCT02658981,  NCT01968109,
NCT02061761,  NCT03005782,  NCT02676869,
NCT02966548, and NCT02460224).

Activating co-stimulatory molecules on T cells

4-1BB (CD137, TNFRSF9), OX40, CD27 and CD40 are
members  of  tumor  necrosis  factor  receptor  (TNFR)
superfamily, which provide strong costimulatory signals for
augmenting and diversifying T-cell responses (72). Tumor-
reactive  CD8+  T  cells  frequently  co-express  PD-1  and
costimulatory molecules of the TNFR family (73), offering
a repertoire of potential targets for T cell-based therapy.

4-1BB  has  been  identified  as  a  potent  mitigator  of
exhausted T cells,  and administration of  an anti-4-1BB
agonist significantly enhanced CAR-T-cell efficacy in solid
tumor settings (74). Preclinical studies have shown that 4-
1BB  activation  and  PD-1  blockade  synergistically
promoted T-cell anti-tumor responses in a mouse model of
poorly  immunogenic  tumors  (75).  In  addition,  a  recent
study revealed that co-treatment with anti-4-1BB agonist,
anti-PD-L1 mAb,  and  a  tumor  vaccine  produced  more
powerful  anti-tumor  capacity  by  reprogramming
suppressive and stimulatory signals in ovarian cancer (76).
Clinical  trials  of  this  combinatorial  therapy  for  the
treatment  of  advanced  solid  tumors  are  ongoing

(NCT02179918,  NCT02652455,  NCT02845323,  and
NCT02554812). Unfortunately, severe liver toxicity has
become the biggest obstacle for the clinical application of
anti-4-1BB agonists.

Both  OX40  and  CD27  costimulatory  signals  could
reinvigorate exhausted CD8+  T cells.  Anti-PD-1/OX40
mAb treatment was shown to increase CD4+ T and CD8+

T cells and decrease Tregs and MDSCs (77). Either OX40
or CD27 agonistic mAb combined with anti-PD-L1 mAb
synergistically  enforced  CD8+  T  cell  proliferation  and
effector cytokine generation in mice (78).  The ongoing
clinical  trials  are  as  follows:  combination  of  third
generation  CAR-T cells,  iC9-GD2-CD28-OX40 (iC9-
GD2)  T  cells,  with  anti-PD-1  mAb  in  relapsed  or
refractory neuroblastoma (NCT01822652); and combination
of agonistic CD27 mAb and anti-PD-1 mAb in advanced
refractory solid tumors (NCT02335918).

It  has  been  reported  that  CD40  activation  rescued
antiviral  CD8+  T cells  from PD-1-mediated exhaustion
(79).  Combination  of  agonistic  CD40  mAb  with
chemotherapy completely reversed the resistance to anti-
PD-1 mAb in pancreatic tumors (80), and a clinical trial of
nivolumab in combination with GM. CD40L vaccine in
adenocarcinoma of the lung is ongoing (NCT02466568).
However,  the  appropriate  dose,  schedule,  route  of
administration, and formulation for these combinatorial
therapies  need  to  be  determined  for  treating  different
cancer types.

Modulating T cell metabolism

It has been reported that a hostile TME can restrain T-cell
immune response by altering cellular metabolism, such as
impaired  glycolysis  (81,82),  fatty  acid  metabolic
dysregulation (83,84), aberrant cholesterol esterification
(85),  disruption  of  mitochondrial  function,  and  the
generation of high levels of reactive oxygen species (ROS)
(86). Hypoxia-mediated glycolysis was shown to interfere
with  the  differentiation  and  function  of  T  cells  by
modulating  the  expression  of  co-inhibitory  receptors,
including PD-1, CTLA-4, and LAG-3 (87). However, anti-
PD-1/PD-L1 mAbs could partially restore T cell glycolysis
and function (81). One mechanism by which PD-1 inhibits
T-effector cell differentiation is through the enhancement
of fatty acid-oxidation (FAO) of endogenous lipids (83).
Free linoleic acid has been reported to cause T cell loss by
ROS-mediated depletion and promote liver carcinogenesis
(83). Additionally, limiting cholesterol esterification in T
cel l s  through  inhibit ion  of  acetyl-coenzyme  A
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acetyltransferase 1 (ACAT1),  which is  a  key cholesterol
esterification  enzyme,  enhanced  the  proliferation  and
effector  function  of  CD8+  T  cells,  and  combination
treatment  with  ACAT1 inhibitors  and  anti-PD-1  mAb
demonstrated remarkable tumor regression in mice with
melanoma (85). In-depth investigations of the association
between PD-1 expression and metabolism in dysfunctional
T cells are needed to guide anti-PD-1 therapy.

Promoting T-effector cell infiltration

Chemokines play a role as chemoattractants of different
leukocyte subsets and act as a double-edged sword in tumor
development. For example, Th1-type chemokines C-X-C
Motif Chemokine Ligand 9 (CXCL9) and C-X-C Motif
Chemokine Ligand 10 (CXCL10) can increase effector T
cell trafficking. It has been verified that upregulation of
CXCL9 and CXCL10 improved the therapeutic efficacy of
anti-PD-1 mAb (88). However, it also has been recently
reported that adenosine signaling in the TME suppressed
CXCL9 and CXCL10 production and T-cell infiltration in
metastatic  lung  cancer,  and  this  suppression  could  be
partially reversed by adenosine receptor antagonist (89).
Therefore, targeting Th1-type chemokines might offer an
effective approach to combinatorial therapy with anti-PD-
1/PD-L1 mAb,  particularly  in  tumors  with poor T-cell
infiltration. In addition, the immunosuppressive stromal
cell derived factor-1 (SDF1α)/CXCR4 axis was found to be
upregulated in sorafenib-treated advanced hepatocellular
carcinoma, which enhanced the expression of PD-L1 and
the  recruitment  of  Tregs  and  M2-type  macrophages
(90,91). Blockade of SDF1α/CXCR4 axis had no significant
effect  on CTL infiltration and function but  altered the
suppressive state of the TME. Dual blockade of PD-1 and
CXCR4 boosted CD8+ TIL responses and prevented the
polarization toward an immunosuppressive TME in mice
(91), providing a rationale for combinatorial blockade of
PD-1 and SDF1/CXCR4 axis in clinical studies.

Targeting immunosuppressive factors in the TME

The  TME consists  of  cancer  cells,  inflammatory  cells,
stromal  cells,  and cytokines.  These components  form a
complicated immunosuppressive network that limits T-cell
activation and induces T-cell dysfunction (Figure 2). The
immunosuppressive nature of the TME has emerged as a
critical regulator of anti-tumor immune responses, and it is
increasingly  being recognized as  a  major  barrier  to  the
effectiveness  of  cancer  immunotherapy.  Some  tumors

resistant to anti-PD-1/PD-L1 therapy have been shown to
simultaneously  utilize  multiple  immunosuppressive
pathways in the TME, and these pathways are described
below.

Suppressive cytokines

IL-10 is produced by multiple cells in the TME, and its
receptor, IL-10R, was found to be upregulated on activated
CD8+ T cells in some cancer patients (92). IL-10/IL-10R
interaction  was  shown  to  directly  limit  CD8+  T  cell
proliferation and survival (93). PD-1 blockade augmented
IL-10R expression on tumor antigen-specific CD8+ T cells,
and dual PD-1 and IL-10 blockade significantly enhanced
the response of antigen-specific CD8+ T cells in vitro (34),
offering a rationale for blocking both IL-10 and PD-1 to
strengthen  T  cell  anti-tumor  activity.  In  some  cancer
patients, IL-6 levels were also elevated and closely related
to an aggressive cancer phenotype (94). Cancer-associated
fibroblast (CAF)-derived IL-6 has been reported to recruit
MDSCs  and  impair  TIL  function  by  upregulating
inhibitory  immune  checkpoints,  and  IL-6  blockade
reversed  anti-PD-L1  resistance  in  a  hepatocellular
carcinoma tumor model (95). Another suppressive cytokine
in the TME, transforming growth factor-β (TGF-β), was
shown to directly inhibit CD8+ T cell response, promote
Treg development, limit DC maturation, and upregulate
PD-1 expression on T cells (95-97). It has been recently
shown  that  TGF-inhibition  reversed  PD-1-induced
immune tolerance and reinforced T cell  responses (98).
Thus,  combinatorial  administration  of  TGF-β/TGF-β
receptor inhibitors and anti-PD-1/PD-L1 mAbs could be
considered as a potential therapy to enhance T cell anti-
tumor immunity in cancer immunotherapy.

VEGF-A/VEGF receptor 1 (VEGFR1)

VEGF-A produced by tumor cells and associated immune
cells was identified to limit DCs maturation, enhance Tregs
and  MDSCs  accumulation,  and  upregulate  PD-1
expression  by  stimulating  VEGFR1  (35).  Anti-VEGF
antibody  was  approved  by  the  FDA  as  the  first
antiangiogenic  agent  several  years  ago.  A clinical  study
demonstrated  that  increased  levels  of  PD-L1  were
associated with shorter survival in patients with metastatic
RCC  receiving  VEGF-targeted  agents  (99).  Anti-
angiogenic agents targeting VEGF-A-VEGFR1 pathway
have been reported to dramatically enhance the efficacy of
anti-PD-1/PD-L1 therapy in a mouse model of colorectal
cancer (100), suggesting that combined targeting VEGF-A-
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VEGFR and PD-1/PD-L1 pathway might be a potential
strategy for VEGF-expressing tumors. However, potent
VEGF inhibition might  increase  tumor hypoxia,  which
would decrease the therapeutic effect. Therefore, further
studies are needed to determine the proper dose titration
when combining anti-VEGF therapy with anti-PD-1/PD-
L1 therapy.

PI3-kinase γ (PI3Kγ) signaling in myeloid cells and macrophages

Recently, macrophage PI3Kγ was identified as a molecular
switch  that  controlled  immune  suppression  during
inflammation and cancer (101), and high PI3Kγ expression
increased  the  suppressive  activity  of  macrophages  and
infiltrating  myeloid  cells,  which mediated  resistance  to
anti-PD-1/PD-L1  therapy  in  mouse  models  of  cancer
(101,102).  Conversely,  it  was  shown  that  selective
inactivation of PI3Kγ could reshape the TME and promote
cytotoxic-T-cell-mediated  tumor  regression,  thus
improving  the  therapeutic  effect  of  anti-PD-1/PD-L1
therapy (101,102).  These results  provide evidence for a
combinatorial  approach  using  PI3Kγ  inhibitors  to
overcome  resistance  to  anti-PD-1/PD-L1  therapy  in
patients  with  accumulated  suppressive  myeloid  cells  or
macrophages.

Targeting tumor-intrinsic factors

In  addition  to  T  cell  autonomous  factors  and  the
suppressive  TME,  tumor-intrinsic  factors,  such  as
abnormal tumor metabolism, elevated oncogenic pathways,
and loss of tumor antigens, might be potential therapeutic
targets in combination with PD-1/PD-L1 blockade.

Targeting immunosuppressive tumor metabolites

Some tumors that are resistant to anti-PD-1 therapy have
been shown to utilize multiple tumor metabolites involved
in  immunosuppression.  For  example,  to  survive  in  a
hypoxic environment, cancer cells have been shown to alter
purine metabolism, and this alteration also increased CD73
expression by lymphocytes, endothelial, and epithelial cells
(103).  High  levels  of  CD73 induced  the  production  of
extracellular  adenosines,  which  further  increased  PD-1
expression  and  Treg  accumulation  by  binding  to  A2A
adenosine receptor, thus promoting resistance to anti-PD-1
therapy  (104) .  Dual  CD73  and  PD-1  blockade
demonstrated  synergistic  anti-tumor  activity  in  murine
tumor models (40). Tumor cell-derived prostaglandin E2
(PGE2)  and its  synthesizing  enzyme,  cyclooxygenase-2

(COX-2), serve as both pro-inflammatory mediators and
potent  immune  suppressors  of  anti-tumor  immunity
(105,106). Single PD-1 blockade enhanced the production
of  PGE2  and  pro-tumor  inflammatory  cytokines,
attenuating  its  therapeutic  effect,  while  combinatorial
inhibition of PD-1 and PGE2 significantly augmented the
function  and  survival  of  CTLs  during  chronic  viral
infection (107). In addition, dual COX-2 inhibition and
PD-1 blockade synergistically improved T cell anti-tumor
immunity  in  mouse  model  of  melanoma  (106) .
Upregulation  of  IDO  has  also  been  detected  in  many
tumors and has been shown to render experimental mouse
models of melanoma resistant to anti-PD-1 therapy (39).
Targeting  IDO-mediated  immunosuppression  has
demonstrated promising synergistic effects when combined
with anti-PD-1/PD-L1 mAbs (108). In addition, high levels
of ROS, a kind of short-lived, chemically highly reactive
and oxygen-containing small molecules, have been reported
to suppress the T cell immune responses. ROS could be
produced by cancer cells and multiple immunosuppressive
cells in the TME (86). PD-1 was shown to alter the lipid
metabolism of antigen-specific T cells, which might further
promote  ROS production  and  impair  their  anti-tumor
capacity (83,84). These results suggest that targeting the
immunosuppressive metabolites of tumor cells might be an
effective adjunct therapy to improve the therapeutic effect
of PD-1/PD-L1 blockade.

Targeting oncogenic signaling pathways

Many  tumor-intrinsic  oncogenic  signalings  are  being
increasingly  recognized  as  contributors  to  immune
suppression, which affects the efficacy of anti-PD-1/PD-L1
therapy. It has been reported that PTEN loss and PI3K-
Akt pathway activation not only directly boost tumor cell
growth but also suppress anti-tumor leukocyte recruitment
and function in multiple cancers. It was also shown that
PI3K inhibition could improve anti-PD-1 mAb activity in
murine models (109,110). Stabilization of WNT-β-catenin
signaling was identified as an important mechanism of T
cell  exclusion  from  cancers  by  inhibiting  CD103+  DC
recruitment, which eventually mediated resistance to anti-
PD-L1 therapy (111). Activation of EGFR pathway was
reported to correlate with the upregulation of PD-1, PD-
L1,  CTLA-4,  and  pro-tumor  inflammatory  cytokines,
which inhibited the therapeutic effect of PD-1 blockade
(112). In patients with melanoma, JAK1/2 loss-of-function
mutations in tumor cells can mediate primary resistance to
PD-1  blockade  via  a  genetic  lack  of  reactive  PD-L1
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expression (36). In addition, tumor cell downregulation of
MHC-I molecules represents another common mechanism
of tumor immune escape and resistance to anti-PD-1/PD-
L1  therapy  (38).  Taken  together,  these  findings
demonstrate  that  tumor-specific  oncogenic  signals  play
important roles in the development of resistance to anti-
PD-1/PD-L1 therapy,  and targeting them might  be  an
effective  approach  to  enhance  the  therapeutic  effect  in
some cancer patients.

Targeting mutant tumor neoantigens

Effective anti-PD-1/PD-L1 therapy requires tumor cell
recognition by tumor antigen-specific T cells in the TME.
This suggests that poorly immunogenic tumors should be
largely  resistant  to  anti-PD-1 therapy.  However,  it  has
been  revealed  that  tumor  neoantigen  burden  is  closely
correlated with the immunogenicity and determines the
sensitivity  to  anti-PD-1  therapy  (113).  Neoantigen-
enriched tumors  also  showed a  higher  accumulation  of
CD8+ T cells (114), and PD-1/PD-L1 blockade has been
reported to potentiate neoantigen-specific T cell responses
(113). MSI-H cancer, resulting from defective mismatch
repair  proteins  (dMMR),  is  a  type  of  “hot”  tumor
characterized by high mutation burdens, active immune
TME, and high expression levels of immune checkpoints
(115).  In  2017,  FDA  approved  pembrolizumab  for  the
treatment  of  MSI-H/dMMR-subtype  solid  tumors.  A
recent study demonstrated that immunodominant T cell
reactivities were directed against mutant neoantigens or a
cancer germline antigen, rather than the canonical antigens
in human papillomavirus (HPV)-associated cervical cancer

(116). Therefore, the mutant neoantigens in a cancer might
predict its  sensitivity to anti-PD-1/PD-L1 therapy,  and
these neoantigens could be targeted in novel combination
approach with anti-PD-1/PD-L1 therapy.

Clinical trials of anti-PD-1/PD-L1 mAbs

Anti-PD-1/PD-L1  mAbs  have  shown  encouraging
clinical  results  in  both  solid  tumors  and  hematological
malignancies  (Table  1),  and  clinical  trials  of  some
combinatorial therapies are shown in Table 2. These results
remind us the great potential of anti-PD-1/PD-L1 mAbs in
treating patients.

Conclusions

PD-1/PD-L1 blockade represents an attractive therapeutic
strategy in cancer immunotherapy. However, primary and
adaptive resistance to anti-PD-1/PD-L1 therapy has been
reported  to  occur  in  30%–60%  of  cancer  patients.
Therefore,  a  comprehensive  understanding  of  the
resistance  mechanisms  and  how to  overcome  them are
critical  for  improving  clinical  responses.  Combined
therapies  of  PD-1/PD-L1  blockade  with  adjunctive
strategies,  such as  chemotherapy,  RT,  ACT,  and other
immune  checkpoint  inhibitors,  have  shown  promising
succcess  by  improving  the  probability,  duration,  and
potency of  clinical  activity.  However,  the combinations
discussed here require additional research to identify the
safety,  eff icacy  and  optimal  dosage  and  timing.
Additionally, as the microenvironment where immune cells

Table 1 Clinical trials of anti-PD-1/PD-L1 agents in cancer patients

Antibody Phase Tumor type Clinical response rate (%) Reference

Nivolumab (anti-PD-1)
I Relapsed or refractory Hodgkin’s lymphoma 87.0 (117)

III Untreated melanoma without BRAF mutation 40.0 (118)

Pembrolizumab (anti-PD-1)
II MSI-high CRC 57.0 (115)

III Advanced NSCLC 44.8 (119)

Pidilizumab (anti-PD-1)
I Hematologic malignancies 29.0 (120)

II Diffuse large B cell lymphoma 51.0 (121)

MPDL3280A (anti-PD-L1)
I Metastatic bladder cancer UBC 26.2 (122)

I Melanoma, NSCLC, RCC,
gastrointestinal cancer

36.0
(overall)     (3)

MPDL3280A (anti-PD-L1)
I Metastatic RCC 15.0 (123)

II Cisplatin-ineligible, locally advanced and
metastatic urothelial carcinoma 23.0 (124)

PD-1, programmed cell death 1; PD-L1, programmed death 1 ligand; MSI, microsatellite instability; CRC, colorectal cancer; NSCLC,
non-small cell lung cancer; UBC, urothelial bladder cancer; RCC, renal cell carcinoma.
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interact  with  cancer  cells  is  complicated  and  dynamic,
improved understanding of the mechanisms limiting anti-
PD-1/PD-L1  therapy  is  needed  to  broaden  its  clinical
applicability in the future.
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