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Introduction

In 2012, approximately 44,000 new cases of pancreatic 
cancer were diagnosed in the United States, making it the 
tenth most common cancer in both men and women (1). 
Pancreatic cancer is a lethal disease, with a 5-year relative 
survival rate for all stages of only 6%. While surgery 
offers the best chance at prolonged survival, only 10-
20% of patients present with resectable disease at the time 
of diagnosis (2). Even still, locoregional failure remains 
common in resected cases, and radiation therapy has been 
used in the neoadjuvant and adjuvant settings to improve 

local control (3). While the recently published Eastern 
Cooperative Oncology Group trial showed a survival benefit 
with the addition of radiation therapy to gemcitabine for 
locally advanced pancreatic cancer (4), local control at 
conventional doses remains poor (5). Gemcitabine and 
fluoropyrimidine-based radiosensitizers are currently in 
clinical use, but both are associated with moderate to severe 
toxicities in most patients (4,6). This highlights the urgent 
need for novel radiosensitizers with less toxicity.

P53, a key mediator of DNA damage and apoptotic 
responses, is mutated in approximately 60% of pancreatic 
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cancers. Mohiuddin et al. (7) have shown that pancreatic 
cancer cells with wild-type P53 are significantly more 
radiosensitive than P53 mutant cells. Another study showed 
that adenovirus-mediated transfer of wild-type P16 and 
P53 to pancreatic cancer cells results in multiple effects, 
including G1 cell cycle arrest and increased apoptosis (8). 
Recombinant adenovirus-p53 (rAd-p53) (Gendicine; China 
Shenzhen SiBiono GeneTech Co., Ltd., Shenzhen, China) 
is a newly developed medicine of gene therapy that relies 
on the function of wild-type P53; it was recently licenced 
for clinical use in China for head and neck malignancies. 
A randomized trial in nasopharyngeal carcinoma has 
demonstrated improved locoregional control with weekly 
intratumoral injections of rAd-p53 combined with 
radiation therapy compared to radiation therapy alone (9). 
In pancreatic cancer, a pilot study has also demonstrated 
improved disease control when rAd-p53 is added to 
chemoradiation therapy (10); however, the mechanism 
of this combined action is unclear. In the present study, 
we tested the hypothesis that transfection of pancreatic 
carcinoma cell line SW1990 (harboring mutant P53) with 
rAd-p53 can alter expression of target genes, including Bax 
and p21, and increase sensitivity to radiation. This would 
provide a scientific foundation for further clinical trials of 
rAd-p53 as a novel radiosensitizer of pancreatic cancer.

Materials and methods

rAd-p53 and cell culture

rAd-p53 is a recombinant replication-incompetent human 
serotype 5 adenovirus, in which the E1 region is replaced 
by a human wild-type p53 expression cassette. rAd-p53 
was stored at –20 ℃ in a concentration of 1×1012 virus 
particles/mL. The human pancreatic carcinoma cell line 
SW1990 (mutant p53) was obtained from the Chinese 
Academy Of Medical Sciences & Peking Union Medical 
College (CAMS & PUMC, Beijing, China). Cells were 
cultured in Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS; 

Invitrogen Corporation, Australia), 50 unit/mL penicillin, 
and 50 μg/mL streptomycin (Invitrogen Corporation, USA) 
at 37 ℃ in an atmosphere of 5% CO2 (300/3,000 Incubator, 
Revco Scientific, USA).

Immunocytochemistry (ICC)

Glass slides were sterilized by dipping them in 90% ethanol 
and carefully drying them over a flame for a few seconds. 
Each slide was placed in a sterile 100-mm diameter tissue 
culture dish, and a specific number of cells were seeded 
(Table 1). Dishes were divided into an experimental group 
(group A) and a control group (group B). Cells in group A 
were infected with rAd-p53 solution at a viral multiplicity 
of infection (MOI) of 100 (1:100 MOI) for various lengths 
of time (Table 1). Cells were fixed by incubating them in 
4% (V/V) paraformaldehyde in PBS for 20 min at room 
temperature. Immunocytochemical staining for P53, P21 
and Bax was performed using anti-P53 (DO-1; 1/100 
dilution; Santa Cruz Biotechnology, USA), anti-P21 (F-5;  
1/100 dilution; Santa Cruz Biotechnology, USA), and 
anti-Bax (B-9; 1/100 dilution; Santa Cruz Biotechnology, 
USA) antibodies, respectively. ICC-positive cells were 
stained brown, and ICC-negative cells were stained blue. 
Slides were visualized using an inverted microscope 
(Olympus CKX31, Japan). The experiment was repeated 
three times to minimize random error. 

Cell irradiation

A set number of logarithmic phase cells were grown in 
25 cm² culture flasks, as shown in Table 2. Cells in group 
A were infected with rAd-p53 solution at a viral MOI of 
100. Group B served as the control group. Cultures were 
terminated by Giemsa staining at different times. The 
experiment was repeated three times.

Cells were irradiated with 6 MV X-ray (Varian 600CD 
linear accelerator, Varian Medical Systems, Inc. USA) at 
room temperature at a central dose rate of 300 MU/min. 
The output factor was 1.041, with a 20 cm × 20 cm field. 

Table 1 The design of transfection

Group
4 (96 h) 3 (72 h) 2 (48 h) 1 (24 h)

A B A B A B A B

N 1×106 1×106 1.5×106 1.5×106 3×106 3×106 4×106 4×106

rAd-p53 1×108 / 1.5×108 / 3×108 / 4×108 /

N, cell number; rAd-p53, vector particles.
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Five clinically relevant doses were chosen: 0 Gy (group 1),  
2 Gy (group 2), 4 Gy (group 3), 6 Gy (group 4), and  
8 Gy (group 5) (Table 2). Cells were cultured in the CO2 
incubator for two weeks and then colony-forming units (≥50 
cells) were calculated. 

Curve fitting models

Plating efficacy (PE) was defined as colonies observed/
number of cells plated. Survival fraction (SF) was the ratio 
of PE for the irradiation group compared to PE for the 
control group. Curve fitting analyses were made according 
to the single-hit multitarget (SHMT) [SF=1–(1–e–D/D0)N,  
Dq=D0×ln(N)], the modified single-hit multitarget 
(mSHMT) {S=e–D/D1[1–(1–e–D/D2)]N}, and the linear-quadratic 
(L-Q) (S=e–αD-βD2

) models, which are the most commonly 
used models in radiation oncology. The mean values were 
recorded as data. 

Statistical analysis

Statistical comparisons were performed using the Pearson 
chi-square test. A two-tailed P<0.05 was considered 

statistically significant. SPSS 18.0 (SPSS Inc., Chicago, 
IL, USA) was used for the calculation of SF prediction, 
and Origin 8.6 (OriginLab, USA) was used for cell survival 
curve fitting.

Results

Here, we investigated whether transfection of the 
pancreatic carcinoma cell line SW1990 with rAd-p53 
sensitizes the cells to radiation. Results from ICC staining 
(Table 3) showed that expressions of P53, P21 and Bax 
were all significantly increased (P<0.05) after transfection 
with rAd-p53. Additionally, this increased expression was 
dependent on time, with the group at 96 h achieving the 
highest level of expression (Figure 1). Thus, we were able 
to successfully transfect SW1990 cells with rAd-p53, and 
this subsequently influenced expression of downstream 
targets. Average numbers of counted colonies and plating 
efficiencies are shown in Table 4.

We calculated SF of SW1990 cells in both group A 
and group B at different radiation doses (0, 2, 4, 6 and  
8 Gy), and cell survival curves based on the three different 
models (SHMT, mSHMT, L-Q) were generated (Table 5). 

Table 2 Radiation design for the cell survival curve

Group
1 (0 Gy) 2 (2 Gy) 3 (4 Gy) 4 (6 Gy) 5 (8 Gy)

A B A B A B A B A B

N 50 50 200 200 500 500 1×103 1×103 1×104 1×104

rAd -p53 5×103 / 2×104 / 5×104 / 1×105 / 1×106 /

N, cell number; rAd-p53, vector particles.

Table 3 Pearson chi-square test of ICC results between experimental and control groups

Group

1 (4×106 cells) 2 (3×106 cells) 3 (1.5×106 cells) 4 (1×106 cells)

Positive rate 

(%)
χ2 P

Positive rate 

(%)
χ2 P

Positive rate 

(%)
χ2 P

Positive rate 

(%)
χ2 P

P53

A 28.50 13.36 0.000 30.48 17.47 0.000 51.28 69.84 0.000 89.92 555.04 0.000

B 18.66 19.08 25.28 15.34

P21

A 38.04 135.58 0.000 39.16 93.80 0.000 40.20 113.75 0.000 56.80 187.78 0.000

B 7.16 12.40 10.72 15.12

Bax

A 54.10 77.88 0.000 64.10 196.76 0.000 70.30 64.02 0.000 76.50 232.82 0.000

B 26.71 20.20 45.25 28.30
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Figure 1 ICC staining (×200) for P53, P21 and Bax for SW1990 after 96 h of transfection. ICC-positive cells are stained brown.

Table 4 Cell irradiation experiment

Group 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B

Colonies 39 41 83 92 90 160 61 81 77 101

PE 0.780 0.820 0.415 0.460 0.180 0.320 0.061 0.081 0.008 0.010

SF (x±s) 1.000±0.000 1.000±0.000 0.534±0.094 0.572±0.084 0.231±0.117 0.393±0.055 0.078±0.031 0.100±0.011 0.010±0.001 0.012±0.001

Colonies, the average number of counted colonies; PE, the average plating efficiency. The experiment was reapeated three times.

Table 5 The fitting parameters of three different models

Model SER Group Parameter 1 Parameter 2 Parameter 3 GOF

SHMT D0 Dq N R2

1.215 A 2.199 0.754 1.409 0.998

B 2.462 1.239 1.654 0.981

mSHMT D1 D2 N R2

1.219 A 3.423 8.269 0.578 0.991

B 3.734 9.202 0.267 0.969

L-Q α β R2

1.228 A 0.264 0.027 – 1.000

B 0.170 0.028 – 0.985

SER, sensitizing enhancement ratio; GOF, goodness of fit.
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Compared to the SHMT and mSHMT models, the L-Q 
model appeared to give a better fit. Figure 2 demonstrates 
the prediction of SF with the three different models. Cell 
survival curves were plotted, and the curve for group A 
(rAd-p53 infected) was consistently shifted to the left 
compared to the curve for group B, which suggested that 
transfection of rAd-p53 enhances the radiosensitivity of 
SW1990 cells.

Discussion

Pancreatic cancer is associated with a relatively poor 
prognosis, prompting research and clinical trials for 
new and improved therapies (11-14). Gene therapy 
has emerged as a promising treatment modality in 
oncology, with more than one thousand clinical trials 
being conducted worldwide (15). Previous researches on 
rAd-p53 had been published for esophageal squamous cell 
carcinoma (16), non-small cell lung cancer (17), ovarian 
cancer (18), hepatocellular cancer (19), and nasopharygeal 
cancer (9). However, the applicability and mechanism of 
action of gene therapy in pancreatic cancer has not been 
fully elucidated. In this study, we sought to evaluate the 
effect of rAd-p53 in a pancreatic cancer cell line with 
mutant p53. We succesfully achieved adenovirus-mediated 
expression of p53 in SW1990 cells and showed that this 
expression of wild-type P53 sensitizes the cells to clinically 
relevant doses of radiation.

We found that rAd-p53 was capable of infecting 
SW1990 cells, which was similar to previous reports for 
lung adenocarcinoma cells (20). The infected group showed 
increased expression of both P21 and Bax compared to 
the control group. P21 is tightly controlled by P53 and 

plays a crucial role in mediating growth arrest when cells 
are exposed to DNA damaging agents, such as radiation. 
The expression of Bax is upregulated by P53, and Bax has 
been shown to be involved in P53-mediated apoptosis. The 
increase in P53 protein expression was time-dependent, 
with the group at 96 h achieving the highest level of 
expression. This is in contrast to an earlier study using A549 
lung adenocarcinoma cells, which showed no significant 
difference in P53 expression when comparing the 6 h group 
to the 24 h group (20). Such difference may be due to the 
different cancer cell lines used. Further studies need to be 
performed to identify the peak of P53 expression following 
infection of this pancreatic cancer cell line.

We found that transfection of SW1990 cells with wild-
type p53 increases the radiosensitivity of this cell line, and 
the L-Q model (sensitizing enhancement ratio, 1.228) 
gives the best fit for the SF data (Table 5). Our results of 
successful transfection are similar to the results published 
by Merlin et al. (21), who used a non-viral technique, and 
Mercadé et al. (22), who used a viral technique with pro-
drug activating enzymes.

This work adds to the body of literature exploring 
gene therapy in pancreatic cancer. There are still several 
important questions that must be answered before 
gene therapy can become a standard treatment option. 
Adenoviral-mediated expression of P53 (rAd-p53) is 
currently licensed for clinical use in China. To date, it is 
unclear whether P53 is an optimal target in pancreatic 
cancer, and whether there are pre-treatment predictive 
markers for response. The use of an adenovirus as a delivery 
system may also pose certain problems. Patients may 
require multiple intratumoral injections of the virus, as has 
been previously shown for oral cancer (23). This is primarily 

Figure 2 The cell survival curves fitting with three models separately. (A) The SHMT model; (B) The mSHMT model; (C) The L-Q 
model. Group A, cells are infected with rAd-p53 solution at 1:100 MOI; group B, control group; SF, survival fraction.

A B C
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die to the fact that the efficacy of expression is quite low 
when administered intravenously. Additionally, there are 
safety concerns related to the host immune response (24). 
However, to date, rAd-p53 has been shown to be associated 
with only a relatively low toxicity profile (fever) in an earlier 
trial (10). The experiment should also be performed on 
other pancreatic cancer cell lines. 

In conclusion, the results support the development 
of gene replacement therapy for pancreatic cancer with 
rAd-p53 and provide an important preclinical foundation 
for further work.
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