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Kidney cancer, now being the 7th leading cancer in men in 
US, contributing to the estimated 61,560 newly diagnosed 
and 14,080 deaths in 2015 (1). Renal cell carcinoma (RCC) 
is the most common form of kidney cancer of which 
70–80% of cases are defined as clear cell RCC (ccRCC), 
which is the RCC subtype we discuss below. The incidence 
of RCC has been steadily rising by 2–4% each year in 
recent decades worldwide. Even though the incidence of 
RCC in Asia is lower than in US and Europe, the mortality-
to-morbidity ratio is much higher in Asia than in Western 
countries (2). In China, there is obvious increment of the 
RCC incidence in recent years with the early diagnosed 
cases increasing. 

Epigenetics is a phenomenon that involves heritable 
changes in gene expression that does not affect the 
nucleotide sequence but impacts the conformation of the 
DNA (3). Epigenetics crucially determine which genes 
are expressed by which cell type, and when (4). Epigenetic 
alterations are considered as a hallmark of cancer (5). 
At least three types of epigenetic modifications regulate 
chromatin: DNA methylation, histone modifications, 

and non-coding RNAs. The most well documented 
epigenetic alterations are DNA methylation and histone 
modifications. Unlike genetic alteration, such epigenetic 
changes can potentially be reversed, making enzymes 
involved in such processes promising therapeutic targets. 
RCC is characterized by numerous genetic and epigenetic 
alterations. Here we reviewed the important epigenetic 
alterations in DNA methylation, histone modifications 
and non-coding RNAs including microRNAs and 
recently identified long noncoding RNAs during RCC 
tumorigenesis and progression, especially their potential 
uses in molecular diagnosis, prognostic and possible 
therapeutic prediction. 

DNA methylation in ccRCC

DNA methylation and tumorigenesis of ccRCC

DNA methylation includes hypermethylation of area rich 
in cytosine and guanine dinucleotides (CpG islands, CpGIs) 
within the promoter that results in tumor suppressor gene 
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(TSG) inactivation and affects noncoding RNA expression 
or promoter CpGIs hypomethylation resulting in proto-
oncogene activation. Recent data have shown that the non-
CpGIs loci are also very important in gene regulation. 
Furthermore, newer high-resolution assays reveal that gene 
body methylation may be even more important in gene 
regulation than promoter methylation. 

It is well known that the familial and nearly 70% of 
sporadic ccRCC cases are characterized by the alterations 
of von Hippel–Lindau (VHL) gene resulting from either 
somatic mutation in majority status, loss of heterozygosity 
and promoter hypermethylation (6). The dysfunction 
of VHL leads to the accumulation of hypoxia-inducible 
factors (HIFs) and increased effects of angiogenesis 
and pathogenesis of ccRCC (7,8). Although the VHL 
inactivation by promoter methylation occurs in ~15% of 
sporadic ccRCC, inactivation of the TSG in RCC most 
commonly results from promoter methylation, whilst 
intragenic mutations are rare. 

By comparing DNA methylation profiles (1,505 CpGIs 
analyzed) between familial and sporadic VHL wild type 
ccRCC cases, several loci, including RASSF1, PITX2, 
CDH13, HS3ST2, TWIST1, TAL1, TUSC3, and DCC 
were found to be more frequently methylated in sporadic 
VHL wild-type ccRCC than in familial ccRCCs (9). This 
finding might suggest that DNA methylation complicated 
the ccRCC tumorigenesis pathway(s) and give possible 
explanation of low effectiveness in cancer therapy if only 
blocking the downstream effects of VHL inactivation. 

Numerous genes have been found to be frequently 
methylated in ccRCC by candidate-gene approaches (50% 
of cases), including CDH1, APAF1, COL1A1, DKK2, 
DKK3 ,  SFRP1 ,  SFRP4 ,  SFRP5,  WIF ,  PCDH17  and 
TCF21, which are not methylated or are rarely methylated 
in matched normal renal tissues (<10%) (10-12). These 
genes are involved in different aspects of tumorigenesis, 
such as signal transduction, apoptosis, angiogenesis, 
adhesion and tumor invasion. Another recent comparative 
study of CpG methylation status in 38 ccRCCs and 9 
matched normal kidney tissues including 27,500 CpGs 
at >14,000 genes showed that 55 genes were identified as 
methylated in ccRCC but not in normal controls. Further 
detailed functional study revealed eight novel ccRCC 
TSG candidates, including OVOL1, DLEC1, BMP4, SST, 
TMPRSS2, TM6SF1, SLC34A2, and COL1A2. Among 
them, OVOL1 epigenetic silencing was identified to be 
capable of increasing c-Myc expression and may lead 
to c-Myc pathway activation commonly seen in ccRCC 

formation (13).  
Several functional epigenetic strategies were applied 

for ccRCC TSGs identification. One strategy is RCC cell 
lines treated with 5-aza-2-deoxycytidine were subjected to 
high-density gene expression microarray analysis. The re-
expressed genes after demethylation were further validated 
in primary tumor samples. Five genes including BNC1, 
COL14A1, CST6, PDLIM4, and SFRP1 were revealed 
to show frequent (>30%) promoter region methylation 
associated with transcriptional silencing. Further the cell 
growth assay in vitro by over expression or RNAi knock 
down of these genes suggested their tumor suppressor 
activities (12). The other strategy is methylated DNA 
immunoprecipitation (MeDIP) in combination with high-
density whole-genome expression microarray for direct 
analysis of genomic methylation patterns in primary 
ccRCC. Nine genes, including ATP5G2, PCDH8, CORO6, 
KLHL35, QPCT, SCUBE3, ZSCAN18, CCDC8, and FBN2 
were found frequently methylated in primary ccRCC and 
promoter hypermethylation of these genes resulted in 
significant reduction of their expression level (14). 

Using the HELP (HpaII tiny fragment enrichment 
by ligation-mediated PCR) assay, a very recent study 
determined the CpG methylation status of 1.3 million loci 
across the genome in RCC and found that the aberrant 
methylation was particularly enriched in kidney-specific 
enhancer regions. These aberrantly hypermethylated 
regions revealed enrichment for binding sites of AP2a, 
AHR, HAIRY, ARNT, and HIF1 transcription factors, 
contributing to the dysregulated hypoxia signaling pathways 
in RCC (15).

DNA methylation and prognosis of ccRCC

Genome-scale methylation analysis is a powerful tool to 
identify multi-gene profiles reflecting tumor behavior, 
supported by a comprehensive methylome analysis using 
single-CpG resolution infinium array. This study has 
revealed ccRCCs with positive CpGI methylator phenotype 
on the FAM150A, GRM6, ZNF540, ZFP42, ZNF154, 
RIMS4, PCDHAC1, KHDRBS2, ASCL2, KCNQ1, PRAC, 
WNT3A, TRH, FAM78A, ZNF671, SLC13A5 and NKX6-2  
genes were characterized by more aggressive tumor 
phenotypes and poorer patient outcomes (16).

The very recent high-resolution methylome analysis 
of RCC demonstrated that only methylation at enhancers 
was highly prognostic for survival in even multivariate 
analysis (15).
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DNA methylation and molecular diagnosis of ccRCC

Some promoter hypermethylation have been detected 
in serum, peripheral blood and urine, suggesting the 
blood and body fluid-based DNA methylation candidate 
marker’s potential value in early non-invasive detection 
of ccRCC (10,17). For example, the levels of promoter 
hypermethylation of RASSF1A (Ras association domain 
family member 1A) and VHL detected in serum of ccRCC 
patients (18), as well as that of KILLIN (a novel p53-
regulated TSG proximal to PTEN) and long interspersed 
nuclear elements (LINE-1) detected in peripheral blood 
(19,20), were significantly higher than that in patients with 
benign tumors and healthy controls, respectively. Certainly 
the practical significance of these methylation candidate 
markers deserves validation in large, independent cohorts. 

So far, there is no data available for DNA methylation 
markers in prediction of chemotherapeutic response in 
RCC patients, even though several differentially methylated 
genes were proposed as candidate markers of drug response 
in human cancer (21). ‘Epigenetic treatment’, with DNA 
methyltransferases inhibition and silenced gene activity 
restoration, resulting in enhanced apoptosis and decreased 
cancer cell growth, has become a promising therapeutic 
strategy for ccRCC. This novel strategy may reprogram 
the gene expression profiles in cancer cells thereby making 
ccRCC more susceptible to standard therapy (22).

Histone modifications in ccRCC

DNA, histones and nonhistone proteins are condensed 
into a highly complex nucleoprotein structure known as 
chromatin, either in a compact heterochromatin form 
or a more open euchromatin form, which is related 
to transcriptionally active genes. Histones on the 
N-terminus modifications include methylation, acetylation, 
phosphorylation, ubiquitylation and sumoylation of specific 
residues, of which histone acetylation and methylation 
are the most studied (23). Generally, acetylation causes 
active transcription and is associated with a more open 
chromatin conformation, whereas the transcriptional effects 
of methylation depend on the residue affected as well as 
the degree of methylation (mono-, di- or trimethylation). 
For example, methylation of H3K4, H3K26 and H3K79 is 
associated with active marks, whereas methylation of H3K9, 
H3K27 and H4K20 is associated with repressive marks (24). 

Histone deacetylase (HDACs), histone acetyltransferases 
(HATs), histone methyltransferases (HMTs) and recently 

discovered histone demethylases (HDMTs) are critical 
enzymes in regulating various biological and cellular 
processes including cell proliferation, angiogenesis, 
hypoxia-related effects and cell cycle regulation. Increasing 
studies have found the deregulation of these enzymes in 
ccRCC. Targeting these enzymes, reversing their epigenetic 
modifications has the potential of reactivating TSGs or 
suppressing oncogenes, thus, affecting tumor growth or 
progression of ccRCC. 

Histone modification, especially histone-modifying enzymes 
in ccRCC initiation and progression

HIF isoforms are shown to be correlated with histone-
modifying enzymes. The interaction between HDAC4 
and HIF-1α could protect HIF-α from proteasomal 
degradation (25). JARID1C, which encodes a HIF-
targeted histone H3K4 demethylase and has truncating 
mutations in RCC (3%), is believed to be a TSG in VHL 
null tumors (26). JMJD1A, one HMT transcriptionally 
induced by HIF2α under hypoxic conditions, is consistent 
overexpressed in RCC. Several studies have reported that 
SETD2, which encodes a histone H3K36 methyltransferase 
located (3p21.31) in close proximity to VHL gene within 
a commonly lost (approximately 90%) 3p locus, as a novel 
TSG in ccRCC (27). The somatic truncating mutations in 
SETD2 (3–8%) were associated with VHL mutations (28), 
hypoxic phenotype and decline in chromatin remodeling 
complex protein PBRM1 in RCC tumor samples, as well 
as advanced stage (29). These results indicate that histone-
modifying enzymes are especially important in RCC with 
VHL mutation or deletions. 

Epithelial-to-mesenchymal transition (EMT) is believed 
to play an important role in ccRCC progression, as well as 
in many other cancers. HDAC inhibition could suppress 
TGF-β-induced EMT of renal proximal tubular epithelial 
cells (30), thereby may indicate a potential role for HDAC 
inhibitor in reversing EMT during RCC progression, which 
deserve further exploration. 

HDACs are also essential in the regulation of the cell 
cycle and apoptosis through their effects on pRB and p53. 
When combined with other agents, such as rapamycin 
(an inhibitor of mTORC1), HDACs inhibitors have been 
shown to have strong anti-tumor activity in xenografts of 
certain RCC cell types (31). 

Enhancer of zeste homolog 2 (EZH2), the core catalytic 
subunit of polycomb repressive complex (PRC2), acts as a 
HMT by adding 3 methylgroups to lysine 27 of histone 3 
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(H3K27). The trimethylation of H3K27 leads to chromatin 
condensation and mediates epigenetic silencing of a broad 
range of TSG involved in cancer progression. EZH2 could 
promote migration and invasion of RCC cells via E-cadherin 
repression (32). MiR-101 act as a negative regulator of 
EZH2 expression (33). 

Histone modification and prognosis of ccRCC 

The level of histone H4 acetylation (H4Ac) was inversely 
correlated with the pathological stage and nuclear grade 
of ccRCC, whereas lower H3Ac levels were associated 
with systemic metastatic spread and tumor progression. 
Furthermore, the low H3K18Ac level (lysines 18 in histone 
H3) was significantly correlated with RCC progression in 
univariate analysis and it could be used as an independent 
predictor of cancer progression and poor survival following 
surgery in localized RCC (34). 

A series of reports have showed that the lower 
methylation levels of histone 3 in different lysine loci were 
of worse prognostic value. The lower levels of global H3K4 
methylation (mono-, di- and trimethylation), especially 
H3K4me2, in RCC tumor samples were reported to be 
correlated with the adverse clinicopathological parameters 
such as more advanced pathological stage and higher 
Fuhrman grade as well as worse progression-free survival 
or cancer-specific survival in univariate analysis; suggesting 
they could be used as a predictor of poor prognosis of RCC 
(35,36). The methylation H3K9 level was also found to 
be of prognostic significance in RCC patients. The lower 
H3K9me2 level was shown to be a significant predictor 
of worse outcome in RCC even in multivariate analysis 
including nuclear grade, tumor location and the putative 
biomarkers (Ki67 index and p53) (34). The lower level 
of global methylation levels of lysine 27 of histone H3 
(H3K27me1, H3K27me2 and H3K27me3) were shown 
to be associated with advanced pathological stage, higher 
Fuhrman grade and vascular invasion. In addition, lower 
H3K27me3 level was observed in patients with distant 
metastasis. Furthermore progression-free survival was 
shorter in patients with lower H3K27me1 and H3K27me3 
levels, although only in a univariate analysis (37). 

Numerous reports have showed that EZH2 overexpression 
was an adverse prognostic biomarker in different types of 
carcinomas. So far limited studies have suggested that the 
higher intratumoral expression of EZH2 was correlated with 
the advanced stages and poor survival of ccRCC patients 
both in primary and metastatic cases (38,39), however the 

conflicting results exist.

miRNA and ccRCC

MiRNAs are a group of small (around 22 nucleotides) 
non-coding RNAs regulating post-transcriptional gene 
expression through the epigenetic mechanism of RNA 
interference (40). The 6 to 8 nucleotides at 5' end of 
a miRNA known as seed region, can determine the 
specificity of its interaction with the target mRNA on its 3' 
untranslated region, resulting in the inhibition of translation 
and/or degradation of mRNA (41,42). The abnormal 
expression of miRNAs is related to cancer development, 
progression and metastasis. Overexpressed miRNAs in 
cancer may act like oncogenes by down-regulating TSG. 
Vice versa, down-regulated tumor suppressor-like miRNAs 
could result in the up-regulation of oncogenes. In general 
the oncogenic miRNAs are upregulated and tumor 
suppressor miRNAs are downregulated in malignancy. 
Accumulating evidences show that miRNAs play important 
roles in the tumorigenesis and progression of RCC (43).

miRNA and initiation of ccRCC

The role of miRNA in the VHL-HIF pathway and their 
relationship have been of particular interest and explored 
in many reports. MiR-17-5p, miR-224, miR-200 family, 
miR106a/b, miR-21, miR-221, miR-199a, and miR-214 have 
been identified to have prominent roles in ccRCC formation. 
They are predicted to target the VHL-HIF1 axis along 
with the targets of HIF/HIF transcription factors: vascular 
epithelial growth factor (VEGF), platelet-derived growth 
factor, transforming growth factor, the downstream PI3K/
AKT and RAS/RAF/MEK/ERK pathways, and mTOR 
pathway. The same miRNA can control multiple targets 
along the same pathway, and multiple miRNAs can target 
the same molecule. This implies that even subtle alterations 
in these miRNAs may cause significant influences on the 
outcome of the regulated pathway and the tumorigenesis of 
ccRCC. This also indicates that miRNAs can control the 
hypoxia-related VHL-HIF1 axis and the common cancer-
related pathways in a tight regulatory network.

MiR-17-92 cluster are oncogenic miRNAs in many cancers (44). 
MiR-92a, being a member of miR-17-92 cluster, is found to 
be overexpressed in ccRCC and correlated negatively with 
VHL mRNA levels (45). Meanwhile, the presence of direct 
interactions between miR-17-5p (also a member of miR-17-
92 cluster), miR-224 with VHL and HIF1-α was validated 
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by luciferase assay and Western blot analysis, as well as in 
ccRCC specimens. In addition, miR-17-5p can regulate 
multiple key components of hypoxia-related signaling 
pathways, including VEGFA and ENLN3. MiR-224 can 
inhibit the TGF-β pathway members SMAD4 and SMAD5 (46). 
MiR-210 is the most ubiquitously upregulated miRNA 
in multiple cancer cell lines under hypoxia. As a result of 
HIF1 or HIF2 over expression in ccRCC cells, miR-210 
is found to be upregulated and target ISCU (iron sulphur 
cluster homologue), which acts as a scaffold protein for the 
formation of Fe-S clusters which may contribute to anaerobic 
respiration in tumors (47). Moreover, the accumulation of 
miR-210 may induce aneuploidy via E2F3 down regulation 
and contribute to the initiation of ccRCC (48). Besides 
the HIF pathway, dysfunction of VHL also works through 
other ways. One of major VHL functions is inhibiting beta-
catenin. In VHL inactivated RCC, beta-catenin is the direct 
target of miR-1826 and they show an inverse correlation (49).  
In another report, increased expression of miR-28-5p could 
promote chromosome instability by inhibiting mitotic 
checkpoint protein Mad2 in VHL inactivated tumors (50). 
However, so far few studies report how miRNAs function in 
VHL independent ccRCCs. 

miRNA and progression of ccRCC

The invasion and metastasis of cancer start with the 

enhanced ability of tumor cell to destruct extracellular 
matrix (ECM) proteins and invade ECM, which can be 
assisted by metastasis promoting miRNAs (51). MiR-21 is 
overexpressed in ccRCC and contributes to ccRCC invasion 
and metastasis. Studies revealed miR-21 could inhibit the 
tumor suppressor PDCD4. Overexpressed miR-21 results 
in the phosphorylation and activation of AKT and IKKβ, 
further activation of NF-kB dependent signal pathway 
transcription. Together with its blocking PDCD4 mediated 
the inhibitory effects; miR-21 overexpression could restore 
the invasion and migration of ccRCC cells. Moreover, IKKβ 
activates mTOR1, which further restores cell invasion and 
migration (52). EMT is a crucial process involved in tumor 
motility and invasion. Down regulation of several miRNAs 
has been shown to cause EMT in ccRCC (53). Tumor 
suppressors miR-200 family (miR-200a/b/c, miR-141, 
miR-429) are significantly downregulated in RCC cells, 
which repress the expression of E-cadherin through direct 
targeting their transcriptional inhibitor ZEB1 and ZEB2 
(54,55). For miR-141, its decrease can activate the EphA2/
p-FAK/p-AKT/MMPs signaling cascade to facilitate the 
invasion of RCC cells (56). The process of EMT can also be 
triggered by HIF dependent down-regulation of miR-30C, 
which leads to subsequent increase of slug and decrease of 
E-cadherin (57). Furthermore, tumor suppressive miR-138 
is significantly reduced in ccRCC. Through its targeting 
of vimentin, a significantly overexpressed intermediate 
filament protein in ccRCC tissues, miR-138 could 
contribute to cell migration and invasion (58). CAV2, a 
member of caveolin family, function as a signal transduction 
regulator in the invasion and migration of ccRCC cells. 
Tumor suppressor miR-218 is reported to directly regulate 
CAV2. Downregulation of miR-218 and up-regulation of 
CAV2 might be frequent events in ccRCC (59). 

Some well-defined miRNAs and their targets in ccRCC 
are summarized in Table 1. The regulatory functions of 
these important miRNAs in the major signaling pathways of 
ccRCC initiation and progression are illustrated in Figure 1.

miRNA and molecular diagnosis of ccRCC

MicroRNAs are highly stable and abundant in plasma, 
serum and other body fluids. They can passively leak 
from damaged or apoptotic cells into circulation. Some 
miRNAs are contained within the extracellular vesicles, thus 
resistant to RNase and persistent in blood. Detection and 
characterization of circulating miRNAs can be a promising 
non-invasive way to detect cancer (60,61). Recent studies 

Table 1 Well-defined miRNAs and targeted molecules in ccRCC

Function in CCRCC mi-RNA
Targeted molecules/

pathways

Initiation

HIF dependent 
mechanism

miR-17-5p VEGFA, ENLN3

miR-224 SMAD4, SMAD5

miR-210 ICSU, E2F3

HIF independent 
mechanism

miR-1826 β-catenin

miR-28-5p Mad2

Progression

EMT miR-200 family ZEB1, ZEB2

miR-141 EphA2/p-FAK/p-AKT/
MMPs

miR-30c Slug, E-cadeherin

Migration and 
invasion

miR-21 PDCD4, AKT, IKKβ,  
NF-κB, mTOR

miR-138 Vimentin

miR-218 CAV2
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suggested miR-210 as a potential biomarker for early diagnosis 
of ccRCC. As we mentioned before, the elevation of miR-
210 could be resulted from the over activation of VHL-
HIF pathway. As in cancer tissues, miR-210 level in serum 
was found to be increased significantly in RCC patients 
compared to non-cancer controls (62). Another study found 
that the level of miR-378 was increased and miR-451 level was 
decreased in the serum of RCC patients. These two miRNAs 
combination enable the identification of RCC in serum with 
the sensitivity of 81% and specificity of 83% (63). A panel 
of 5 serum miRNAs, including three significantly increased 
miRNAs (miR-193a-3p, miR-362 and miR-572) and two 
markedly decreased miRNAs (miR-28-5p and miR-378), can 
differentiate stage I RCC from non-cancer controls, suggesting 
it may have the potential to be used clinically as an auxiliary 

tool for the early detection of RCC (64). 
Analysis of urinary miRNAs is another promising 

approach for early diagnosis of urological cancer (65), 
although there are limited studies available for RCC. Same as 
in blood, the miRNA level in urine also shows stability (66).  
Different from the usual down-regulation of miR-15a in 
other cancers, miR-15a is upregulated in ccRCC biopsies 
and urine samples, which is not seen in other urinary 
and nonurinary tumors, and inflammatory conditions of 
the urinary tract. The finding suggests miR-15a can be a 
potential RCC biomarker (67). 

By integrating the miRNAs, mRNAs, and pathways, some 
miRNAs are suggested to be the novel ccRCC biomarkers, 
such as miR-425, miR-136, miR-335, miR-340 and miR-
320d (68). So far none of these markers are identified to 
be specific for RCC. For instance, miR-210 and miR-425 
aberrations are also detected in carcinomas of digestive system.

miRNA and prognosis of ccRCC

Many studies have investigated the relationship between the 
alteration of miRNAs and prognosis of ccRCC (Table 2). 
The aberrant expression of miRNAs is frequently related 
to poorer prognosis, because tumor suppressor miRNAs 
are usually downregulated and pro-oncogenic miRNAs 
are upregulated. Up-regulation of miR-21 is a marker for 
poor prognosis in several cancers including RCC (69). 
Furthermore, the ratio of miR-21/10b was shown to be an 
independent prognostic marker for metastasis-free ccRCC (70). 
For the tumor suppressing miRNAs, studies have showed 
that the decreased expression of miR-497, miR-23b-27b 

Table 2 Well-defined miRNAs and prognosis of ccRCC patients

Expression level miRNAs Prognosis

Up-regulation miR-21 Poor

miR-21/10b ratio Poor

miR-221 Poor

miR-501 Poor

miR-126 Good

Down-regulation miR-497 Poor

miR-23b-27b Poor

miR-514 Poor

miR-501 Good

miR-126 Poor

ccRCC, clear cell renal cell carcinoma.

Figure 1 Epigenetic regulation in the formation and progression of ccRCC. Schematic outline of some of the epigenetic alterations, 
especially some important miRNAs, regulate the signaling pathways that are proposed to contribute to the proliferation, angiogenesis and 
metastasis of ccRCC.
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cluster are associated with the advanced stage and shorter 
overall survival of RCC patients (71,72). As for miR-210, its 
overexpression was demonstrated as a poor prognosis marker 
for RCC in one study (73), while a conflict result relating to 
good prognosis was shown in another study (47).

MiR-501 is differently expressed in RCC, regulating the 
balance of cell apoptosis and proliferation. Its high expression 
level predicts a worse outcome and vice versa (74). Similarly, 
miR-126 can also be differently expressed, however its 
down-regulation is related to the poor prognosis and its up-
regulation is associated with significantly prolonged disease-
free survival of RCC patients (75). 

By comparing the miRNA expression in primary 
ccRCC and metastatic ccRCC, miR-122 was found to be 
upregulated in primary tumor and reduced in metastatic 
tumor. MiR-514 was shown to be downregulated in primary 
tumor and decreased further in metastatic tumor. These 
miRNA alterations are significantly related to recurrence 
risk and miR-514 could provide independent prognostic 
information for ccRCC patients (76).  

Patients with higher plasma miR-221 levels had a 
significantly lower survival rate than those with lower 
expression levels, revealing miR-221 as an independent 
prognosis factor for ccRCC.

LncRNAs and ccRCC

Long non-coding RNAs (lncRNAs) are operationally 
defined as non-protein coding RNAs that are over 200 
nucleotides in length, which corresponds to a convenient 
cutoff in biochemical fractionation and excludes all known 
small RNAs (77). LncRNAs are divided into two main 
categories, the intergenic lncRNA and the intragenic 
lncRNA. They are differentially expressed in tissue specific 
manner. Many lncRNAs undergo 5' end capping and 3' 
end polyadenylation similar to mRNAs. They were once 
considered as transcriptional noise while accumulated 
evidences show that lncRNAs have a regulatory role in 
cellular development, proliferation, differentiation by cis-
regulation and trans-regulation (78). And their misregulation 
could cause various human diseases including cancer (79). 
Studies have revealed the cancer-involved functions of 
lncRNAs as oncogenes, tumor suppressor, or both. 

LncRNAs and progression of ccRCC

LncRNA MALAT1, located on chromosome 11q13, is 
expressed ubiquitously in normal tissues (80). Several 

studies found that the expression of MALAT1 was 
elevated in multiple cancers such as non-small cell lung 
carcinoma, hepatocellular carcinoma, and pancreatic 
carcinoma, suggesting MALAT1 acting as an oncogene. It 
could enhance cell growth, tumorigenesis and metastasis 
by activating E2F1 transcriptional factor or ERK/
MAPK pathway (81,82). MALAT1 was also upregulated 
significantly in ccRCC compared to the adjacent normal 
tissue. Further, the up-regulation of MALAT1 was related 
to tumor size, stage and lymph node metastasis but not 
histological grade and distant metastasis, which prompted 
MALAT1 overexpression was correlated with ccRCC 
progression and development (83). HOTAIR is another 
oncogenic lncRNA that interacts with the PRC and 
suppresses its target genes. HOTAIR is upregulated in 
several types of cancers and stimulates cancer development 
(84-86). The knockdown of HOTAIR could inhibit the 
proliferation, migration, and invasive ability of RCC cells. 
In addition, inhibition of this lncRNA by siRNA suppressed 
tumor formation in vivo (87). One recent study showed the 
expression and function of HOTAIR could be regulated by 
tumor suppressor miR-141. MiR-141 binds to HOTAIR 
in a sequence specific manner and induces the cleavage 
mediated by Ago2 complex (88). LncRNA SPRY4-IT1 was 
found to be elevated significantly in several types of cancers 
including ccRCC. Moreover its high expression was shown 
to be associated with advanced histological grade, tumor 
stage and lymph node or distant metastasis. Knocking down 
its expression could inhibit the proliferation, migration 
and invasion of ccRCC cells. All these findings indicate 
the oncogenic role of lncRNA SPRY4-IT1 in ccRCC (89). 
For the tumor suppressor lncRNAs, lncRNA GAS5 was 
found to be decreased significantly in ccRCC both in vitro 
and in vivo. Its normal expression suppressed the invasion 
and migration of ccRCC cell. However, GAS5 expression 
did not show any correlation with the clinicopathological 
factors (90). Another studied tumor suppressing lncRNA is 
CADM1-AS1, which is located at the antisense direction of 
a coding exon of CADM1. CADM1 is a tumor suppressor 
that encodes a cellular adhesion molecule and regulates cell 
cycle, apoptosis and differentiation (91). The study revealed 
that lncRNA CADM1-AS1 expression was significantly 
associated with the CADM1 mRNA expression and 
reversely correlated with the RCC stage (92).  

LncRNAs and molecular classification of ccRCC

By next-generation deep RNA-sequencing of the 475 
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primary ccRCC samples from The Cancer Genome 
Atlas (TCGA), lncRNA expressions were assessed and 
the first lncRNA based RCC classification was proposed 
in a recent study. Totally 1,934 expressed lncRNA were 
identified. Unsupervised clustering analysis unraveled 
four lncRNA subclasses in ccRCC associated with distinct 
clinicopathological and genomic features. The cluster C2 
is enriched for 9p deletion, chr8q24.22 gain and chromatin 
remodeler BAP1 somatic mutations. Bearing frequent 1p 
deletion, 17q gain, and MiTF/TFE translocations, the 
cluster C4 (7.8%) is related to tumor subtypes arising 
from the distal tubules of the nephron, which is proved 
to be chromophobe RCC, clear cell papillary RCC and 
translocation associated RCC (92). 

LncRNAs and prognosis of ccRCC

In the lncRNA subtype classification of ccRCC we 
mentioned above, cluster C2 (23.4%) defines the most 
aggressive tumors, with the highest Fuhrman grade, stage 
and the worst overall survival (92). The oncogenic lncRNAs 
are usually upregulated and related to poor prognosis in 
RCC. MALAT1 and SPRY4-IT1 showed the potential 
to become the powerful independent prognostic factor 
for RCC (83,91). Down-regulation of tumor suppressor 
lncRNA CADM1-AS1 is related to worse prognosis 
compared to patients with higher expression level of 
CADM1-AS1 (92). The above limited findings are listed in 
Table 3. 

Epigenomics and target therapy for ccRCC

The recent advances in the clarification of molecular 
mechanisms  involved  in  ccRCC have  led  to  the 
development and approval of multiple agents targeting 
VEGF, such as bevacizumab plus interferon, sorafenib, 

sunitinib, pazopanib and axitinib, or mTOR pathways, 
such as temsirolimus and everolimus for treatment of 
advanced ccRCC (93). The epigenomic studies, especially 
inhibiting HDACs and reversing promoter methylation 
of those important ccRCC TSG, are providing promising 
targets for novel therapies. Several agents targeting Class 
I, II and IV HDACs have been tested in preclinical studies, 
functioning as a single agent or in combination with 
proteasome inhibitor bortezomib, temsirolimus, interferon 
or IL-2 etc. Furthermore, demethylating agents such as 
azacitidine and decitabine have been shown to be useful 
for the treatment of advanced ccRCC besides its successful 
utility in myelodysplastic syndrome and acute myelogenous 
leukemia. 

In conclusion, epigenetic alterations regulating the 
formation and progression of RCC are still in the initiating 
stage of discovery. Further characterization of the genes and 
pathways that are epigenetically altered in ccRCC may lead 
to the development of novel minimally-invasive diagnostic 
and prognostic tools for ccRCC. In the long term, 
epigenetic therapies might provide an additional treatment 
option for advanced RCC that is unresponsive to standard 
management.
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