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Abstract

Objective: To predict preoperative staging using a radiomics approach based on computed tomography (CT)
images of patients with esophageal squamous cell carcinoma (ESCC).
Methods: This retrospective study included 154 patients (primary cohort: n=114; validation cohort: n=40) with
pathologically confirmed ESCC. All patients underwent a preoperative CT scan from the neck to abdomen. High
throughput and quantitative radiomics features were extracted from the CT images for each patient. A radiomics
signature was constructed using the least absolute shrinkage and selection operator (Lasso). Associations between
radiomics signature,  tumor volume and ESCC staging were explored.  Diagnostic  performance of  radiomics
approach and tumor volume for discriminating between stages I−II and III−IV was evaluated and compared using
the receiver operating characteristics (ROC) curves and net reclassification improvement (NRI).
Results: A total of 9,790 radiomics features were extracted. Ten features were selected to build a radiomics
signature after feature dimension reduction. The radiomics signature was significantly associated with ESCC
staging (P<0.001), and yielded a better performance for discrimination of early and advanced stage ESCC compared
to tumor volume in both the primary [area under the receiver operating characteristic curve (AUC): 0.795 vs. 0.694,
P=0.003; NRI=0.424)] and validation cohorts (AUC: 0.762 vs. 0.624, P=0.035; NRI=0.834).
Conclusions: The quantitative approach has the potential to identify stage I−II and III−IV ESCC before
treatment.
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Introduction

Esophageal  cancer  (EC),  the  eighth  most  frequent
malignant disease and the sixth most prevalent cause of
disease  associated  deaths  worldwide,  had  an  estimated
456,000 new cases  and 400,000 deaths  in  2012 (1).  EC
prognosis is strongly associated with the stage at diagnosis.
Most of the patients diagnosed with EC tend towards the

locally advanced stage and the 5-year survival rate is very
low (less than 20%). However, for early stage (stage I−II)
patients,  the  survival  rate  could  be  up  to  85%  (2,3).
Additionally, surgical resection, chemoradiation or other
optimal  therapeutic  approaches  depend  on  accurate
preoperative staging (4). Therefore, accurate preoperative
staging is important for predicting prognosis and choosing
a suitable therapeutic strategy for patients with EC.
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In  clinical  practice,  computed  tomography  (CT)  is
universally used for preoperative diagnostics and remains
the  mainstay  for  preoperative  staging of  EC.  However,
because of poor contrast resolution of the esophageal wall,
it is difficult to distinguish the different histologic layers in
CT. CT is mainly used to evaluate regional spread into the
adjacent  organization (T4)  and distant  metastases  (M1)
(5-7). Recently, the study of radiomics has become a hot
field. Radiomics, a noninvasive, quantitative and low-cost
approach, can objectively and comprehensively evaluate
tumor  heterogeneity  by  extracting  high-throughput
quantitative features  from medical  images through data
characterization algorithms (8,9). These features have the
potential  to  reveal  disease  characteristics  and  provide
valuable  information  for  personalized  therapy  (10,11).
Some previous studies have shown that clinical parameters
merged into quantitative radiomics features as a predictive
biomarker or radionics signature could enhance predictive
accuracy in oncology (12-14).  Through texture analysis,
some studies have shown that several texture features of the
tumor,  such as entropy and uniformity,  were associated
with an early or advanced stage in EC (15,16). However,
using multiple imaging biomarkers to predict the stage of
EC based  on  CT images  has  been  unexplored.  To  our
knowledge, there have been no reports about whether a
radiomics approach could predict the stage of EC based on
CT images.

We hypothesized that the radiomics approach could be
helpful in differentiating stage I−II from stage III−IV EC.
Tumor volume is  an important independent prognostic
indicator  that  was  extensively  researched  (17,18).  We
excluded  tumor  volume  from  radiomics  features  and
separately  analyzed the  discrimination performance for
stage I−II and III−IV patients. Therefore, the purpose of
this  study  was  mainly  to  investigate  the  feasibility  of
preoperative staging using a radiomics approach based on
CT  images  in  patients  with  esophageal  squamous  cell
carcinoma (ESCC).

Materials and methods

Patients

Institutional  Review  Board  approval  of  Guangdong
General  Hospital,  Guangdong  Academy  of  Medical
Sciences was obtained, and written informed consent was
waived by the Institutional Review Board. The data of this
study  were  collected  from  the  Institutional  Picture
Archiving and Communication System for patients with

ESCC  who  underwent  radical  surgery  at  Guangdong
General  Hospital,  Guangdong  Academy  of  Medical
Sciences between January 2008 and August 2016. All the
patients underwent an enhanced CT scan from the neck to
the abdomen.

A total of 211 consecutive patients were initially enrolled
in this study, of which 57 patients were excluded according
to the following exclusion criteria: 1) clinicopathological
information  was  incomplete  (n=27);  2)  pathologically
diagnosed  with  adenocarcinoma  (n=2);  3)  cases  with
unknown  histological  grade  (n=3);  or  4)  absence  of
preoperative contrast-enhanced CT (n=25). The remaining
154  patients  were  included  in  this  study  and  met  the
following inclusion criteria:  1) pathologically confirmed
ESCC; 2) underwent radical surgery for ESCC; 3) standard
contrast-enhanced CT was performed within 1−2 weeks
prior to surgery; and 4) complete clinical information was
available.  We  randomly  divided  the  data  into  primary
cohort and validation cohort by a ratio of about 3:1. We
trained models in the primary cohort and then validated
models  in  the  validation  cohort.  Tumor  staging  was
performed according to the American Joint Committee on
Cancer TNM Staging System Manual, 8th Edition (19).
The clinicopathologic  characteristics  of  patients  in  the
primary and validation cohorts are presented in Table 1.

CT images acquisition and preprocessing

All  patients  underwent  non-enhanced  and  contrast-
enhanced  CT of  the  esophagus  performed  using  a  64-
channel multi-detector CT scanner (LightSpeed VCT, GE
Medical Systems, Milwaukee, Wis, USA). The acquisition
parameters were as follows: 120 kV; 160 mAs; 0.5-second
rotation time; detector collimation, 64 × 0.625 mm; field of
view,  350 mm × 350 mm; and matrix,  512 ×  512.  After
routine  non-enhanced  CT,  contrast-enhanced  CT was
performed after a 25-second delay following intravenous
administration of  85 mL of  iodinated contrast  material
(Ultravist 370; Bayer Schering Pharma, Berlin, Germany)
at a rate of 3.0 mL/s with a pump injector (Ulrich CT Plus
150,  Ulrich  Medical,  Ulm,  Germany).  All  images  were
reconstructed with a thick slice of 5.0 mm.

Although the CT images were obtained from the same
scanner and the same protocol, the intensities of the images
may vary because of some uncontrollable factors such as
room humidity,  temperature,  slice  location,  etc.  Those
factors influenced the gray-level ranges and further affected
the extraction of image features. We normalized segmented
regions of interest (ROIs) to reduce the influence of image
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intensity  variation  via  two  steps:  1)  Gray-level  range
selection: this step normalized image intensities into the
range (μ–3σ, μ+3σ) (where μ is the gray-level mean, and σ is
the gray-level standard deviation), as shown by Collewet
et al. (20). 2) Image quantification: this step specifies the
number of bits for each pixel to quantify the resulting gray-
level range as follows (21):

P (x ) =
·

R ange £ I (x )¡mini2© i
max ii2©¡mini2© i + 1

¸
Where Range is a discrete value (8, 16, 32, 64), I is the

intensity of the original ROI, and Φ is the set of pixels in
the  ROIs  area.  Sixteen discrete  values  were  adopted  to
resample normalization in this study.

Radiomics  features  extraction  and  interobserver
reproducibility

Radiomics features were extracted from late arterial phase
CT images with a 5.0 mm thickness for ESCC patients
(Figure  1).  The  methodology  of  radiomics  feature
extraction  is  presented  in  Supplementary  Material  S1.
Quantitative radiomics features were conducted using in-

house radiomics analysis software and executed in Matlab
2016b (Mathworks, Natick, USA). The radiomics features
included the following categories: 1) first-order statistics
features (8); 2) size and shape-based features (8); 3) texture

Table 1 Characteristics of patients in primary and validation cohorts

Characteristics
Primary cohort [n (%)]

P
Validation cohort [n (%)]

P
I−II stage III−IV stage I−II stage III−IV stage

Age ( ) (year) 56.86±8.37 58.00±8.63 0.498 59.06±6.29 59.56±9.87 1.000
Gender 0.728 1.000

　Male 37 (71.2) 47 (75.8) 14 (82.4) 18 (78.3)

　Female 15 (28.8) 15 (24.2)   3 (17.6)   5 (21.7)

Primary site 0.002 0.728

　Upper 4 (7.7) 6 (9.7) 1 (5.9) 2 (8.7)

　Median 36 (69.2) 23 (37.1) 11 (64.7) 12 (52.2)

　Lower 12 (23.1) 33 (53.2)   5 (29.4)   9 (39.1)

Histologic grade 0.171 0.754

　Well differentiated 10 (19.2) 6 (9.7) 1 (5.9)   3 (13.0)

　Moderately
　differentiated 35 (67.3) 41 (66.1) 13 (76.5) 16 (69.6)

　Poorly differentiated    7(13.5) 15 (24.2)   3 (17.6)   4 (17.4)

Stage 0.876

　I−II 52 (45.6) 17 (42.5)

　III−IV 62 (54.4) 23 (57.5)
Volume
[median (IQR)] (cm3)

10.870
(7.220−19.920)

19.091
(11.207−28.853) <0.001 12.809

(6.773−25.810)
15.701

(13.352−23.824) 0.191

Radiomics score
[median (IQR)]

−0.206
(−0.571−0.067)

0.486
(0.030−1.229) <0.001 −0.491

(−0.651−0.247)
0.361

(0.013−0.936) 0.004

IQR, interquartile range.

 

Figure 1 Flowchart of radiomics features extraction. An example
of  imaging  segmentation  and  features  extraction  in  a  poorly
differentiated, middle thoracic and stage III ESCC patient. (A)
Original  CT  imaging;  (B)  Region  of  interest  (ROI)  manual
segmentation  on  slice  (A);  (C)  Features  extraction  from ROI,
quantifying tumor intensity, shape, texture and wavelet texture.
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features; and 4) wavelet features.
The  ROI  was  manually  outlined  along  the  tumor

boundaries  on each slice  by  an experienced radiologist.
Interobserver reproducibility was analyzed with randomly
selected 30 patients’ images to delineate the ROIs by two
experienced radiologists (doctors 1 and 2, with 11 and 13
years  of  clinical  experience  in  chest  CT interpretation,
respectively),  and  the  rest  of  images  were  outlined  by
doctor  1.  We utilized  interclass  correlation  coefficient
(ICC)  to  determine  the  agreement  in  feature  values
between the observers.

Radiomics signature building and predictive performance

To eliminate the redundant features, we removed highly
correlated features by calculating the correlation coefficient
between the features. Then, the least absolute shrinkage
and selection operator (Lasso) logistic regression model
(22)  was  used  to  identify  the  most  useful  prognostic
features.  Lasso  is  a  method  of  regression  analysis  that
performs feature selection and regularization to improve
the prediction accuracy via penalized estimation functions.
This  maximizes  the  area  under  the  receiver  operating
characteristic  curve  (AUC)  by  tuning  parameter  (λ)
selection and adopts 5-fold cross-validation via minimum
criteria. Simultaneously, most covariate coefficients were
shrunk to zero and the remaining variables with non-zero
coefficients were selected by Lasso. Finally, the radiomics
signature was built  by combining those variables  in the
primary  cohort  and  validated  in  the  validation  cohort.
Radiomics score (Rad-score) was calculated for each ESCC
patient in the primary and validation cohorts. We divided
patients into stages I−II or III−IV according to the cutoff
value of Rad-score. The higher the Rad-score, the higher
the probability of stage III−IV.

We  first  assessed  the  potential  association  between
radiomics signature and stage in the primary cohort and
then validated it in the validation cohort using the Mann-
Whitney  U  test.  The  discrimination  and  classification
ability was adopted to estimate the predictive performance
of radiomics signature. Receiver operating characteristic
(ROC)  curves  were  plotted  for  each  cohort;  the  AUC,
sensitivity, and specificity were calculated to evaluate the
classification ability.

Predictive performance of tumor volume and combination
model

A combination model, which combined volume into the

radiomics signature, was built using a logistic regression
model and the predictive performance was evaluated by
means of discrimination. ROC curves were plotted and the
AUC, sensitivity, specificity, and accuracy were calculated.
Similarly,  volume  was  used  as  a  variable  to  establish  a
univariate  regression model  and evaluate  the predictive
performance as the combination model.

Comparison of  predictive  performance  among volume,
radiomics signature, and combination model

To compare the discrimination ability of those models on
predictive  performance  in  staging,  we  compared  the
difference of AUC of ROC among those models using the
DeLong test in the primary and validation cohorts. The net
reclassification improvement (NRI) was also considered in
two cohorts. NRI is often used to quantify how well a new
model reclassifies  subjects  compared with an old model
(23). It is also used to assess whether one set of predictive
effects  is  better than another.  The value of NRI can be
positive  or  negative.  A  positive  value  means  a  net
improvement of the model in discrimination for patients’
tumor stage.

Statistical analysis

All statistical analysis was performed on R software (version
3.4.0,  R Foundation for  Statistical  Computing,  Vienna,
Austria) in this study. The following R packages were used.
The  “glmnet”  package  was  used  for  Lasso  logistic
regression. AUC values comparison was performed with
the “pROC” package. The “Hmisc” package was used for
calculating  NRI.  The “ggplot2”  and “pROC” packages
were used to draw ROC curves.

The statistical significance levels in this study were all
two-sided,  with  P<0.05  considered  as  statistically
significant. The difference test for gender, stage, tumor
location,  and histologic grade between the primary and
validation cohorts was calculated by taking an independent
samples Chi-square test. Continuous variables such as age,
tumor volume, and radiomics score were analyzed using the
Mann-Whitney U test.

Results

Clinical characteristics of patients

We retrospectively analyzed 154 patients with ESCC who
were  treated  between 2008 and 2016 (stage  I−II,  n=69;
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stage III−IV, n=85). A total of 114 patients were assigned to
the primary cohort (84 males and 30 females; mean age,
57.48±8.49 years), while 40 patients were assigned to the
validation  cohort  (32  males  and  8  females;  mean  age,
59.35±8.44 years). Clinical characteristics of patients in the
primary and validation cohorts with stages I−II and III−IV
are  summarized  in  Table  1.  There  were  no  significant
differences in gender, age, primary site, histologic grade, or
tumor volume between the primary and validation cohorts
(P=0.277−0.876).

Features dimension reduction and radiomics signature
building

In total, we extracted 9,790 radiomics features from CT
images.  These may contain many redundant and highly
correlated features. To find robust and valuable features,
the following steps were performed:

Features  with  ICC≥0.90  were  identified  as  robust
features. After robustness assessment, 6,140 features (ICC:
0.900−0.998)  were  selected  from  9,790  features  (ICC:
0.373−0.998).  Then,  the  correlation  coefficient  was
calculated  for  each  pair  of  features  to  remove  highly
correlated features.  The most predictive feature in each
feature pair with correlation coefficient ≥0.9 was retained
while  the  other  feature  was  discarded.  After  highly
correlated  analysis,  218  features  remained.  Finally,
10 features  were  selected from 218 features  with Lasso
(Figure 2). All those calculations were implemented in the
primary cohort.  The radiomics signature was built  with
10 selected features in the primary cohort and validated in
the  validation  cohort.  For  linear  models  to  produce  a
reasonable  robust  estimate,  Peduzzi  et  al.  (24,25)
recommended that the number of observations per variable
was  at  least  10.  Therefore,  it  is  reasonable  to  select  10
variables  for  114  samples  in  the  primary  cohort.  In
addition,  Rad-score  was  calculated  by  a  Rad-score
calculation formula that was constructed using those 10
selected variables.  The Rad-score calculation formula is
presented in Supplementary Material S2 and Supplementary
Figure S1.

Predictive performance of radiomics signature

A significant difference in radiomics score was observed
between  stages  I−II  and  III−IV  in  the  primary  cohort
(P<0.001),  which was validated in the validation cohort
(P<0.001). Compared with stage I−II, patients who were in
stage  III−IV  had  a  higher  Rad-score  in  the  primary

(median: 0.486 vs. −0.206) and validation cohorts (median:
0.361  vs.  −0.491).  The  radiomics  signature  shows  a
significant  discrimination  between  stages  I−II  and
III−IV. The AUC was 0.795 (95% CI: 0.714−0.875) in the
primary cohort and 0.762 (95% CI: 0.600−0.924) in the
validation cohort.

The radiomics signature performance of discrimination
for  stage  I−II  and  III−IV  ESCC  in  the  primary  and
validation  cohorts  is  presented  using  ROC  curves  in
Supplementary  Figure  S2A,  and  the  Rad-score  for  each
patient in the primary and validation cohorts is shown in
Figure 3.

Predictive performance of volume and combination model

The predictive performance of volume for discrimination
of stage I−II vs. III−IV yielded an AUC of 0.694 (95% CI:
0.597−0.790) and 0.624 (95% CI: 0.427−0.821) in primary

 

Figure 2  Radiomics  feature  selection using the  least  absolute
shrinkage and selection operator (Lasso) logistic regression model.
(A) Turning penalization parameter lambda (λ) using 5-fold cross-
validation and minimum criterion in Lasso model. The area under
the receiver  operating characteristic  (AUC) curve was  plotted
versus log (λ). Log (λ)=−3.006, with λ=0.049 was chosen; (B) Lasso
coefficient profiles of the 218 radiomics features. The vertical gray
line was drawn at the value selected using 5-fold cross-validation
in  (A),  where  the  optimal  λ  yield  10  features  with  non-zero
coefficients.
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and  validation  cohorts,  respectively.  The  combination
model,  combining volume into the radiomics  signature,
yielded an AUC of 0.801 (95% CI:  0.722−0.880) in the
primary cohort and 0.780 (95% CI: 0.628−0.932) in the
validation cohort.  The volume and combination model
performance of discriminating stage I−II and III−IV ESCC
in primary and validation cohorts is presented using ROC
in Supplementary Figure S2B.

Comparison of  predictive  performance  among volume,
radiomics signature and combination model

The  comparisons  of  predictive  performance  among

volume, radiomics signature, and combination model were
evaluated  using  the  DeLong test.  As  shown in  Table  2,
there  were  significant  differences  between  volume  and
radiomics signature and combined model in the primary
and validation cohorts.  Although there is  no significant
difference in predictive performance between the radiomics
signature  and  combined  model,  the  AUC,  sensitivity,
specificity,  and  accuracy  of  the  combined  model  were
better  than  those  of  the  radiomics  signature  in  the
validation cohort.  In addition,  the NRIs among models
were analyzed (Table 3).

Our results show that in discriminating between stage
I−II and III−IV ESCC, the radiomics approach is superior
to volume. The model of radiomics signature is better than
volume (primary cohort: AUC, 0.795 vs. 0.694, P=0.003;
validation  cohort:  AUC,  0.762  vs.  0.624,  P=0.035);  the
combination model is better than volume (primary cohort:
AUC, 0.801 vs. 0.694, P<0.011; validation cohort: AUC,
0.780 vs. 0.624, P=0.047). We further proved our results
through  analysis  of  the  NRI  (radiomics  signature  vs.
volume:  primary  cohort,  NRI=0.424,  Z-statistics=2.37,
P=0.017; validation cohort, NRI=0.834, Z-statistics=2.92,
P=0.004;  and  combination  model  vs.  volume:  primary
cohort, NRI=0.829, Z-statistics=3.74, P<0.0001; validation
cohort, NRI=0.921, Z-statistics=3.83, P=0.001).

Discussion

In  this  study,  we  developed  and  validated  a  radiomics
signature  based  on  CT  images  for  the  preoperative
individualized prediction of stage I−II or III−IV ESCC.
Based  on  the  significant  difference  in  Rad-score,  the
radiomics  signature  successfully  differentiated  between
stages  I−II  and  III−IV  of  ESCC  before  treatment.
Additionally,  by  comparing  the  volume,  radiomics
signature and combination model, our results showed that
the radiomics approach has potential value in preoperative
differentiation of stage I−II and III−IV ESCC.

In clinical  practice,  CT, magnetic  resonance imaging
(MRI),  positron  emission  tomography  (PET),  and
endoscopic ultrasound (EUS) have their own advantages
and disadvantages in the staging of EC. The current UK
guidelines  recommended  to  combine  these  different
modalities to stage EC, as each imaging modality provides
unique  staging  information  (26,27).  Consolidating  this
unique  information  provided  by  these  modalities  is
conducive to improving the probability of accurate staging.
However,  the use of these modalities is  limited because

 

Figure 3  Bar  charts  of  Rad-score  for  each patient  in  primary
cohort (A) and validation cohorts (B). Red bars indicate the rad-
score of stage I−II ESCC, while light green bars indicate the rad-
score of stage III−IV ESCC. Blue dotted line shows the cut-off
value (0.054) of rad-score; above the line indicates stage III−IV,
below the line indicates stage I−II. Red bars above the blue dotted
line  or  light  green  bars  below  the  blue  dotted  line  mean
misclassification.
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they are expensive and time-consuming. CT is a low cost,
readily available, and noninvasive imaging modality. Our
study  constructed  a  CT-based  radiomics  signature  and
demonstrated the potential to discriminate between stage
I−II and III−IV ESCC. Currently, the primary role of CT
is the detection of distant metastases in EC.

To  build  the  radiomics  signature,  we  selected  10
potential  predictors  from  6,140  candidate  radiomics
features by both eliminating highly correlated features and
Lasso logistic regression. Most of the radiomics features’
regression coefficients were shrunk to zero by Lasso in the
model fitting process. Thus, the established model is more
easily interpreted. In addition, it not only selects potential
predictors and combines them into the radiomics signature,
but also avoids over fitting (28). In the radiomics approach
in this study, like in most multimarker analyses (29-31), we
combined several individual images for radiomics features
to discriminate stage I−II and III−IV ESCC, and achieved a
satisfactory discrimination (AUC: 0.795 in primary cohort;
AUC: 0.762 in validation cohort). Compared with previous
studies on tumor staging, the performance of the radiomics
signature we built was better than those reported in lung
(AUC: 0.762 vs. 0.64) (32) and colorectal cancers (AUC:
0.762 vs.  0.708) (33);  the accuracy was higher than that

reported in EC (accuracy <0.50) (34). Similarly, Dong et al.
(35) used PET/CT images combined with texture features
to  stage  ESCC  and  obtained  a  satisfying  result  (AUC:
0.789). Liu et al. (36) applied one texture feature that was
extracted from CT images to identify ESCC with overall
stage (I−II and III−IV) and achieved a good performance
(AUC: 0.778). Although their results are slightly superior
to our result, the studies of Dong et al. (35) and Liu et al.
(36) were limited by the lack of independent validation and
the small sample size, and needed further study before they
could  be  applied  to  clinical  practice.  As  a  possible
alternative  to  preoperative  staging,  we constructed and
validated  a  radiomics  signature  that  can  be  used  as  an
independent predictor to discriminate between stage I−II
and III−IV ESCC.

The significant differences in AUC and NRI between
volume  and  radiomics  approaches  indicate  that  the
predictive  performance  of  staging  with  the  radiomics
approach is better than that of volume. It is not surprising
that  the  radiomics  approach  yielded  a  satisfactory
performance  in  tumor  staging.  The  tumor  volume  is  a
morphological characteristic that only reflects the size of
the  tumor,  and  the  information  it  provides  in  tumor
heterogeneity  is  limited.  Nevertheless,  the  radiomics

Table 2 Predictive performance of discrimination of all models

Model
Primary cohort Validation cohort

Cutoff AUC
(95% CI) Sen. Spe. Acc. P AUC

(95% CI) Sen. Spe. Acc. P

Volume 21.170 0.694
(0.597, 0.790) 0.452 0.865 0.640 0.003* 0.624

(0.427, 0.821) 0.348 0.706 0.500 0.035*

Radiomics
signature 0.514 0.795

(0.714, 0.875) 0.742 0.750 0.746 0.011** 0.762
(0.600, 0.924) 0.739 0.647 0.700 0.047**

Combination
model 0.498 0.801

(0.722, 0.880) 0.742 0.731 0.739 0.567*** 0.780
(0.628, 0.932) 0.739 0.706 0.725 0.383***

AUC, area under the curve; 95% CI, 95% confidence interval; Sen., sensitivity; Spe., specificity; Acc., accuracy; *, the difference
comparison of AUC between volume and radiomics signature using the DeLong test; ** and ***, combination model vs. volume and
combination model vs. radiomics signature, respectively.

Table 3 NRI comparisons of inter-models in primary and validation cohorts

Model
Primary cohort Validation cohort

NRI events Non-NRI
events

Total NRI
events P NRI events Non-NRI

events
Total NRI

events P

Vol vs. Rad-Sig 0.001 0.423 0.424 0.017 0.304 0.529 0.834 0.004

Vol vs. Comb 0.194 0.462 0.655  <0.0001 0.217 0.765 0.982  <0.0001

Rad-Sig vs. Comb 0.290 0.538 0.829  <0.0001 0.391 0.529 0.921 0.001

NRI, net reclassification improvement; NRI events, net reclassification improvement for events; Non-NRI events, net reclassification
improvement for non-events; Vol, volume model; Rad-Sig, radiomics signature model; Comb, combined model.
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approach can more fully reveal the tumor heterogeneity
and biological  behaviors  by  combining the quantitative
texture features and morphological features (8,9).

Some  previous  studies  reported  that  the  volume  of
ESCC could be used as a prognostic factor for radiotherapy
and chemotherapy assessment, lymph node metastasis and
tumor  staging  (15,37-39).  However,  the  volume of  the
tumor showed poor discrimination ability in staging early
and advanced EC compared with the radiomics approach in
our study. Additionally, the accuracy was not significantly
improved when volume was combined with the radiomics
signature, and there was no significant difference between
the radiomics signature and combined model. This may be
due  to  two  main  reasons:  1)  The  volume  may  be  a
predictive factor in univariate analysis, but it is no longer an
effective predictor when combined with other potential
predictors in multivariate analysis;  2)  Though contrast-
enhanced CT images were adopted, CT can’t accurately
reveal the length of EC and the depth of invasion, which
can then affect the accuracy of the stage. Therefore, this
suggests that we should take more predictive factors into
account  to  reduce  the  deviations  caused  by  the  single
predictor.

There were several limitations in our study. First,  we
used thick-slice CT images rather than thin-slice images
for  the radiomics  approach.  Zhao et  al.  (40)  found that
thin-slice images fully reflected texture features of tumor
compared to thick-slice images. For the measurement of
tumor volumes, thin-slice images had less measurement
variability. We will further study the effect of thin-slice CT
images for the staging of ESCC and compare it with thick-
slice images to confirm whether the thick-slice images are
comparable. Second, all data in this study are derived from
the same institution, and our findings lack multi-center
validation. We will further investigate whether the findings
are  applicable  to  other  institutions.  Third,  the  tumor
length  and  the  depth  of  tumor  wall  invasion  were  not
included in this study. Zeybek et al. (41) found that tumor
length and invasion depth were independent prognostic
factors in predicting survival and tumor staging for EC. In
the future, we will attempt to investigate the performance
of adding those factors into our study.

Conclusions

This study explored the radiomics approach based on CT
images  as  a  feasible  method  to  identify  stage  I−II  and
III−IV ESCC before treatment. We constructed a multi-

feature radiomics model from extracted radiomics features.
This  model  showed  satisfactory  performance  in  the
preoperative identification of stage I−II and III−IV ESCC.
Therefore,  as  a  noninvasive  and  quantitative  method,
radiomics approach has the potential to guide individua-
lized treatment decisions by preoperative staging.
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Supplementary Material S1

Radiomics feature extraction methodology

All the late arterial phase CT images with 5.0 mm thickness for esophageal cancer patients were obtained from PACS for
tumor segmentation. Regions of interest (ROIs) along the contours of the whole tumor were delineated using 3D Slicer
software (version 4.3, http://www.slicer.org). Quantitative CT images for radiomics analysis was conducted using in-house
radiomics analysis software with algorithms executed in Matlab 2016b (Mathworks, Natick, USA). The radiomics features
included the following categories: (I) first-order statistics features; (II) size and shape based features; (III) texture features;
(IV) wavelet features. Texture features were extracted from gray level co-occurrence matrix (GLCM); gray level run length
matrix (GLRLM); gray level size zone matrix (GLSZM); and neighborhood gray tone difference matrix (NGTDM) of
images.

First order statistics features: First order statistics described the distribution of pixel intensities of the ROI. Seventeen first-
order statistics features were extracted from the pixel matrix of ROI, such as energy, entropy, kurtosis, skewness, etc.

Size and shape-based features: This category of features describes the size and shape of tumor region. Eight features were
extracted from the tumor region including volume, surface area, surface-to-volume ratio, maximum three-dimensional
diameter, sphericity, spherical disproportion, compactness1, and compactness2.

Texture features: This group of features included four typical matrices: gray level co-occurrence matrix (GLCM), gray level
run length matrix  (GLRLM),  gray  level  size  zone matrix  (GLSZM),  and neighborhood gray  tone  difference  matrix
(NGTDM).  GLCM is  the matrix  that  describes  the distribution of  each pixel  in  distance and angle.  GLCM reveals
integrated information about the direction, interval, amplitude, and frequency of images by calculating the correlation
between two gray levels. Twenty-two features were extracted from the GLCM. GLRLM is defined by the length of the
consecutive pixels having the same gray level value. The number of pixels in the run on pictures represents the length of the
run. A total of 14 features were extracted from GLRCM. GLSZM is the starting point of the Thibault matrices, which
provided a statistical description by estimating the bivariate conditional probability density function of the image distribution
values, which included 13 features. NGTDM describes a grayscale difference between pixels with certain grayscale and their
neighboring pixels. We calculated 5 features such as coarseness, contrast, busyness, complexity, and strength from NGTDM.

Wavelet features: three-dimensional wavelet transform was used to extract some information from images. A total of 29
wavelet basis functions are used: db1, db2, db3, db8, db10, sym2, sym3, sym4, coif1, coif2, bior1.1, bior1.3, bior2.2, bior2.8,
bior3.1, bior3.7, bior4.4, bior5.5, bior6.8, dmey, rbio1.1, rbio1.3, rbio2.2, rbio2.8, rbio3.1, rbio3.9, rbio4.4, rbio5.5, rbio6.8. By
turning the ratio of weight to band-pass sub-bands (LLH, LHL, LHH, HLL, HLH, HHL) and low- and high-frequency sub-
bands (LLL and HHH), and applied for each wavelet basis function, we obtained different information from images. The ratio
of 1/2, 2/3, 1, 3/2, 2 were used and marked by a number from 1 to 5.

Finally,  we selected 10 radiomics  features  to  build  a  radiomics  signature using Lasso.  Those features  are  as  follows:
Max_3D_diam,  Skewness,  dmey_1_Inv_var,  rbio1.1_1_IDMN,  db10_2_GLN,  bior5.5_2_HGZE,  rbio1.1_5_LRHGLE,
rbio1.3_5_Busyness, rbio2.2_5_LRHGLE, rbio3.1_5_IMC1. The calculation formula are presented below:

Max_3D_diam: Abbreviation of maximum 3D diameter. A feature of size- and shape-based features, defined by the largest
Euclidean distance between surface voxels of the volume of interest (VOI).

Skewness: A first order statistics feature that measures the asymmetry of the distribution of values about the Mean value. X
denotes the three-dimensional image matrix with N voxels,  is the mean of X:

Skewness =

1
N

XN

i=1

¡
X (i)¡

¢3r
1
N

XN

i=1

¡
X (i)¡

¢2 3
dmey_1_Inv_var: The inverse variance in gray level co-occurrence matrix features with the wavelet basis function of dmey and

http://www.slicer.org


the ratio of 1/2.

Inv var =
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Where the P(i,j) is the co-occurrence matrix for specific θ and α.

Ng is the number of discrete intensity levels in the image.

rbio1.1_1_IDMN: Inverse difference moment normalized in gray level co-occurrence matrix features with the wavelet basis
function of rbio1.1 and the ratio of 1/2.
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XN g

i=1

XN g

j=1

P (i; j )

1+

Ã
ji ¡ j j2

N 2

!
rbio3.1_5_IMC1: Informational measure of correlation 1 in gray level co-occurrence matrix features with the wavelet basis
function of rbio3.1 and the ratio of 2.
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Rbio1.1_5_LRHGLE, rbio2.2_5_LRHGLE: Long run high gray level emphasis in Gray Level Run Length Matrix features
with the wavelet basis function of rbio1.1, rbio2.2 and the ratio of 2.

L R HGLE =
PN g

i=1
PN r

j=1 p (i; j jµ) i2j 2PN g
i=1
PN r

j=1 [p (i; j jµ)]

Where p(i,j) is the (i,j)th entry in the given run-length matrix for a given direction θ,

Ng the number of discrete intensity values in the image,

Nr the number of different run lengths,

Np the number of pixels in the image.

db10_2_GLN: Gray level non-uniformity in gray level size zone matrix features with the wavelet basis function of db10 and
the ratio of 2/3.

GL N =

PN g
i=1

³PN g
j=1 p (i; j )
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Where p(i,j) is the normalized size zone matrix defined as p(i,j)=P(i, j)/Nz

P(i, j) is the size zone matrix. XN g

i=1

XN g

j=1
P (i; j )Nz is the number of zones in the VOI, calculated by 

bior5.5_2_HGZE: High gray-level zone emphasis in gray level size zone matrix features with the wavelet basis function of
bior5.5 and the ratio of 2.

HGZ E =
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rbio1.3_5_Busyness: Busyness in neighboring gray tone difference matrix features with the wavelet basis function of rbio1.3



and the ratio of 2.
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Supplementary Material S2

Radiomics score (Rad-score) calculation formula

Rad-score=0.218+0.252×Max_3D_diam–0.02×Skewness+

0.078×dmey_1_Inv_var–0.06×rbio1.1_1_IDMN–

0.088×db10_2_GLN+0.062×bior5.5_2_HGZE+

0.152×rbio1.1_5_LRHGLE+0.1×rbio1.3_5_Busyness+

0.15×rbio2.2_5_LRHGLE +0.39×rbio3.1_5_IMC1

The histogram (Supplementary Figure S1) of each feature weight in radiomics signature is shown as follows: Y axis shows the
features in radiomics signature and X axis shows the weight of features. Red histogram represents negative weights and blue
histogram represents positive weights.

 

Figure S1 Feature weight in radiomics signature.



 

Figure S2 Receiver operating characteristic (ROC) curves in primary cohort (A) and validation cohort (B). The blue, red and green curves
show the ROC related to volume, radiomics signature and combined model, respectively. The values of the area under the curve (AUC) and
95% confidence interval (95% CI) are presented at the bottom right corner of the figure.


