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Abstract

Objective: The standard treatment for patients with locally advanced gastric cancer has relied on perioperative
radio-chemotherapy or chemotherapy and surgery. The aim of this study was to investigate the wealth of radiomics
for pre-treatment computed tomography (CT) in the prediction of the pathological response of locally advanced
gastric cancer with preoperative chemotherapy.
Methods: Thirty consecutive patients with CT-staged II/III gastric cancer receiving neoadjuvant chemotherapy
were enrolled in this study between December 2014 and March 2017. All patients underwent upper abdominal CT
during the  unenhanced,  late  arterial  phase  (AP)  and portal  venous  phase  (PP)  before  the  administration of
neoadjuvant chemotherapy. In total, 19,985 radiomics features were extracted in the AP and PP for each patient.
Four methods were adopted during feature selection and eight methods were used in the process of building the
classifier model. Thirty-two combinations of feature selection and classification methods were examined. Receiver
operating characteristic (ROC) curves were used to evaluate the capability of each combination of feature selection
and classification method to predict a non-good response (non-GR) based on tumor regression grade (TRG).
Results: The mean area under the curve (AUC) ranged from 0.194 to 0.621 in the AP, and from 0.455 to 0.722
in the PP, according to different combinations of feature selection and the classification methods. There was only
one cross-combination machine-learning method indicating a relatively higher AUC (>0.600) in the AP, while 12
cross-combination machine-learning methods presented relatively higher AUCs (all >0.600) in the PP. The feature
selection method adopted by a filter based on linear discriminant analysis + classifier of random forest achieved a
significantly prognostic performance in the PP (AUC, 0.722±0.108; accuracy, 0.793; sensitivity, 0.636; specificity,
0.889; Z=2.039; P=0.041).
Conclusions: It is possible to predict non-GR after neoadjuvant chemotherapy in locally advanced gastric
cancers based on the radiomics of CT.
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Introduction

Among males and females across the world, gastric cancer
is the fourth and fifth most common malignant tumor and
the third and fifth leading cause of cancer-related death,
respectively  (1),  while  in  China,  it  is  the  second  most
common cancer and the third leading cause of cancer death
(2).  The high mortality  rate  is  partially  because  of  late
diagnosis at locally advanced stages (3). Therefore, many
attempts  have  been made to  improve  patients’  survival,
such  as  tailoring  the  extent  of  surgery  and  adopting
neoadjuvant and/or adjuvant therapy. Previous studies have
indicated  that  perioperative  radio-chemotherapy  or
chemotherapy  regimens  had  more  favorable  effects  on
increasing curative resection rates,  disease-free survival,
and  overall  survival  (3-9).  As  a  result,  the  standard
treatment for patients with locally advanced gastric cancer
no longer relies on surgery alone but also on perioperative
radio-chemotherapy or chemotherapy since the 2000s (10).

For  patients  with  locally  advanced  gastric  cancer,
perioperative radio-chemotherapy or chemotherapy can
improve the overall and progression-free survival, but the
rate of good response (GR) to neoadjuvant therapy varies
between 30% and 80%, depending on which evaluation
methods are used (3-9). This means that at least 20% of the
patients receiving neoadjuvant therapy cannot benefit from
perioperative radio-chemotherapy or chemotherapy, and
are described as non-good response (non-GR). For these
patients, neoadjuvant therapy not only increases the cost of
medical care, but also weakens their immune system and
delays surgery. Therefore, it is important that radiologists
provide accurate information to physicians by identifying
non-GR by non-invasive  approaches  so that  alternative
treatment,  such  as  direct  surgery  can  be  adopted.
Therefore, it is necessary to develop a predictive indicator
or  model  for  the  treatment  response  to  neoadjuvant
therapy  for  gastric  cancer,  which  offers  guidance  on
whether  performing  neoadjuvant  chemotherapy  is
necessary to avoid additional toxicity,  improve patients’
quality of life, and reduce unnecessary morbidity and cost.

Previous studies have highlighted several indicators and
their  correlations  to  the  treatment  response  for  locally
advanced gastric cancer, including peripheral venous blood
neutrophil-to-lymphocyte ratio (NLR), C-reactive protein
and albumin levels,  modified Glasgow prognostic  score
(mGPS) and computed tomography (CT) perfusion (11-
13). However, the majority of the previous works focusing
on the correlations did not clearly describe the predictive

value of the indicators, with the excepting of CT perfusion.
Due  to  the  moderate  sensitivity  (69%)  and  specificity
(58%)  of  a  cut-off  value  of  >25%  reduction  in  tumor
permeability  for  predicting  the  clinical  response  of
preoperative chemotherapy, CT perfusion is insufficient to
support a clinical decision (13).

Radiomics  –  the  high-throughput  extraction  of
quantitative  imaging  features  characterizing  the  spatial
relationships and consistency of signal intensities – within
the tumor region has demonstrated the ability to predict
treatment  response  across  a  range  of  cancer  types  and
imaging modalities  (14).  In  the realm of  gastric  cancer,
radiomics  of  CT  has  been  verified  as  a  potential
preoperative prognostic biomarker in gastric cancer (15);
pre-treatment CT texture analysis can potentially provide
important  information  regarding  the  response  rate  to
neoadjuvant therapy for gastric cancer, thereby improving
risk stratification (16). Therefore, radiomics may be used as
a crucial marker for the response to neoadjuvant therapy in
locally advanced gastric cancer.

In this study, we investigated the ability of the radiomics
of pre-treatment CT for prediction of non-GR in locally
advanced gastric cancer with preoperative chemotherapy
using 32 combinations of four feature-selection methods
and eight classifier models.

Materials and methods

This is a single-center, retrospective study that follows the
Declaration  of  Helsinki  and  good  clinical  practice
guidelines, and was approved by the Ethics Committee of
the  Yunnan  Cancer  Hospital,  Kunming,  China.  The
committee waived the need for  informed consent  to  be
obtained because this case series is a retrospective study,
and patients could not be contacted after discharge from
hospital.  The medical  records  and data  accessed  in  the
study contained no personal or identifying information.

Patients

Forty-seven consecutive  patients  with CT-staged II/III
gastric  cancer  treated  with  neoadjuvant  chemotherapy
between December 2014 and March 2017 were enrolled.
As  recommended  to  the  literature  (17),  the  inclusion
criteria  were  as  follows:  1)  histologically  proven
adenocarcinoma  of  the  stomach  with  the  following
diagnosis:  (a)  stage  IIA−IIIC,  i.e.,  T3−T4  and/or  N+,
according to the American Joint  Committee on Cancer
(AJCC)  8th  edition  (18),  and  (b)  considered  operable
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following initial staging investigations (surgeon believes
that an R0 resection can be achieved); 2) aged 18 years or
older; 3) Eastern Cooperative Oncology Group (ECOG)
performance status 0−1; 4) adequate organ function defined
as follows: Bone marrow, hemoglobin ≥90 g/L, absolute
neutrophil  count  (ANC)  ≥1.5×109/L,  white  blood  cell
count  ≥3×109/L,  platelet  count  ≥100×109/L.  Hepatic
function, serum bilirubin ≤1.5× upper limit of normal value
(ULN), aspartate aminotransferase (AST) and/or alanine
aminotransferase (ALT) ≤3.0×ULN. Renal function, serum
creatinine  ≤0.150  mmol/L,  and  calculated  creatinine
clearance ≥50 mL/min; and 5) patients with a history of
ischemic heart disease and abnormal electrocardiograph
(ECG), or who were over 60 years of age were required to
undergo a  pre-treatment  evaluation of  cardiac  function
with  a  multiple-gated  acquisition  (MUGA)  scan  or
echocardiogram and  a  left  ventricular  ejection  fraction
≥50%. Exclusion criteria were as follows: 1) patients who
refused surgery (n=8); 2) patients with peritoneal carcinosis
confirmed by surgery and pathological evidence (n=2); 3)
patients  with  serious  complications,  such  as  intestinal
obstruction,  active  bleeding,  enterobrosis,  or  obvious
infections  (n=4);  or  4)  patients  with  poor  clinical
conditions,  such  as  deterioration  before  chemotherapy
started (one), the necessity for immediate surgery due to
other  disease  (one),  and  worsening  coexisting  disease
(one) (n=3).

CT protocols

The CT examination was performed with a 128-slice CT
scanner (SOMATOM Definition AS+, Siemens Medical
Solutions, Forchheim, Germany).

Before the examination, patients received 400−600 mL
water orally to distend the stomach. A nonionic contrast
agent (Ultravist 300, Bayer Schering Pharma AG, Berlin,
Germany) was injected with antecubital venous access at a
rate of 3.5 mL/s. A total of 80−100 mL (1.5 mL per kg of
body weight) was injected with a CT-compatible power
injector (Bracco ACIST EZEM, EmpowerCTA) followed
by a 20-mL saline flush at the same rate.

The CT scanning parameters  were  64 detector  rows;
beam collimation 128×0.6 mm; pitch 0.6; 0.5 s/rotation;
kVp/effective mA 120/200; display field of view (DFOV)
42 cm2; 512×512 matrix; slice thickness 1 mm; gap 1 mm.

As recommended by the literature (19), unenhanced, late
arterial phase (AP, 40 s after injection) and portal venous
phase (PP, 70 s after injection) of the upper abdomen scans
were acquired for all patients.

Treatment protocols

The  treatment  protocol  fol lowed  the  National
Comprehensive Cancer Network (NCCN) guidelines (20).
Neoad juvan t  chemotherapy  was  admin i s t e red
preoperatively for three cycles. Each 3-week cycle consisted
of  epirubicin  (50  mg  per  m2  of  body-surface  area)  by
intravenous  bolus  on  d  1,  oxaliplatin  (130  mg/m2)  was
administered by intravenous infusion in 500 mL of  5%
glucose  over  a  period  of  2  h  on  d  1,  and  capecitabine
(1,250 mg/m2, twice daily) from d 1 to d 21.

Treatment response evaluation

The pathological staging served as the reference standard
and  was  determined  according  to  the  tumor-node-
metastasis (TNM) classification system recommended by
AJCC, eighth edition (18). The resection specimens were
evaluated  by  a  dedicated  gastrointestinal  pathologist
(Reader 1, with 10 years of experience), blinded to the CT
data. Patients were separated into different response groups
as GR versus non-GR according to the NCCN (20) and
modified tumor regression grade (TRG) based on Ryan’s
definition (21). The GR patients included those exhibiting
a complete response with no viable cancer cells (TRG 0)
and moderate response with only a small cluster or isolated
cancer cells  remaining (TRG 1).  The non-GR included
TRG 2: a minimal response with residual cancer remaining
but  with  predominant  fibrosis  and  TRG  3:  a  poor
response with minimal or no tumor death and extensive
residue cancer.

Radiomics feature extraction

All  images  were  reviewed  using  dedicated  software  for
image  analysis  (3-D  Slicer,  Version  4.6)  by  a  single
experienced rectal CT radiologist (Reader 2, with 9 years of
experience).  In  the  late  AP,  each  gastric  tumor  was
manually outlined as a region of interest  (ROI) slice by
slice, because this is the effective phase for identifying the
mucosal enhancement of early gastric cancers (19). In the
PP,  the  late  AP  image  was  used  as  a  reference.  After
marking the ROIs to the corresponding images, a volume
of interest (VOI) was built. Next, 3-D radiomics features
were extracted from the VOI using in-house software built
by  MATLAB  2013a  (Mathworks,  Natick,  MA,  USA).
These  radiomics  features  included four  groups:  1)  first
order statistics; 2) shape- and size-based features; 3) texture
features;  and  4)  wavelet  features.  To  extract  wavelet
features, 53 types of default wavelets built in Matlab were
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applied to the origin images.  In total,  19,985 radiomics
features were extracted in AP and PP for each patient.

Radiomics feature selection and radiomics classifier building

Before  selecting  features,  the  redundant  features  were
removed. When the Pearson correlation coefficient of any
two  features  was  >0.90,  one  of  them  was  selected  at
random, and the rest could be treated in the same manner
(22). After that, z-score standardization for standardizing
all features was adopted. There were four methods used in
feature selection, including recursive features elimination
based  on  random  forest  (RFE-RF),  recursive  features
elimination based on Naive Bayes (RFE-NB) (23), selection
by a filter based on linear discriminant analysis (SBF-LDA)
(24), and least absolute shrinkage and selection operator
( lasso)  (25) .  The  methods  se lected  here  were
representatives of the three main methods frequently used
in  feature  selection  (wrapped,  filtered  and  embedded
methods) (26).

In  the  process  of  building  the  classifier  model,  eight
methods were adopted:  RF, linear discriminant analysis
(LDA),  support  vector  machines  with  radial  kernel
(svmRadial),  Linear-SVM (svmLinear),  neural  networks
(nnet), K-nearest neighborhood (KNN), Naive Bayes (NB),
lasso. The methods were implemented by R (Version 3.4.0)
packages including caret (Version 6.0-76). The Leave-one-
out Cross Validation (LOOCV) was used in resampling of
training  and  evaluating  models  in  the  area  under  the
receiver operator characteristic (ROC) curve.

Radiomics  feature  selection  and  radiomics  classifier
building of AP and PP were analyzed separately, but based
on  the  same  methods  (including  features’  extraction,
selection and model building).

Evaluation of radiomics classifier performance

The feature selection methods and classifier model were all
evaluated  in  one  sample  (n=30).  A  combination  of  the
selection  and  classifications  was  generated,  and  a
comparison was performed to find a better model. Because
only 30 patients were involved, analysis of a single training
cohort was applied.  To evaluate the model,  the average
area  under  the  curve  (AUC)  was  used  in  resampling;
meanwhile, accuracy, sensitivity and specificity were also
measured based on the training cohort. Since the number
of patients was limited, the AP and PP were compared to
enhance the conviction of our model, and were analyzed
separately using the same methods (features’  extraction,
selection and model building).

Statistical analysis

The statistical analyses were performed with R software
(Version 3.4.0; R Foundation for Statistical Computing,
Vienna,  Austria)  (http://www.R-project.org).   is
provided for normally distributed variables. Frequencies
are provided for categorical data. Individual variables were
analyzed for significant differences using a t-test and the
Mann-Whitney-Wilcoxon  test  for  non-normally
distributed parameters. The consistency of different ROC
was  examined  by  the  DeLong  test.  A  group  difference
comparison  with  a  two-sided  P-value  of  <0.05  was
considered significant. The following R packages were used
for feature selection methods: “caret” (rfe), “randomforest”
(rf), “e1071” (nb), “MASS” (LDA), “glmnet” (lasso). The
following packages were used for classification methods:
“randomforest”  (rf ) ,  “MASS”  (LDA),  “kernlab”
(svmLinear), “kernlab” (svmRadial), “nnet” (nnet), “class”
(knn), “e1071” (nb), “glmnet” (lasso).

Results

Patient Characteristics

A total of 30 patients (aged 59.9±8.9 years) were involved in
the study. Among these patients, 36.7% (11/30) were GR
(TRG 0−1,  Figure  1)  and 63.3% (19/30)  were  non-GR
(TRG 2−3, Figure 2). The detailed clinical characteristics
are listed in Table 1. There were no statistical differences
between  GR  versus  non-GR  groups  concerning  age,
primary tumor site and pre-treatment clinical TNM stage,
with the exception of gender (P=0.012) and post-treatment
pathological stage (P<0.001) (Table 1).

Predictive performance of radiomics classifier

The AUC was used to quantify the prognostic performance
of  different  crossed-feature  selection  and  classification
methods in predicting non-GR. In the present study, 32
combinations  of  feature  selection  and  classification
methods  were  examined.  The  mean  AUC,  accuracy,
sensitivity and specificity of the different cross-combination
machine-learning methods in AP and PP are presented in
Supplementary Table S1.

The mean AUC ranged from 0.194 to 0.621 in AP, and
from 0.455 to 0.722 in PP. The accuracy was within the
range of 0.276 to 0.621 in AP, and 0.412 to 0.793 in PP.
The sensitivity was in the range of 0.000 to 0.727 in AP,
and 0.091 to  0.636 in  PP.  The range of  specificity  was
0.389 to 0.667 in AP, and 0.556 to 0.889 in PP.
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There was only one cross-combination machine-learning
method indicating a relatively higher AUC (>0.600) in AP,
while  12  cross-combination  machine-learning  methods
presented  relatively  higher  AUCs  (all  >0.600)  in  PP.
Figure 3 depicts the mean AUC, accuracy, sensitivity and
specificity of the above 12 crossed methods in PP.

Interestingly, the feature selection method of SBFLDA +
classifier  of  RF  in  PP  was  only  one  cross-combination
machine-learning  method,  achieving  a  significantly
prognostic performance (Supplementary Table S2). Figure 4
shows the ROC curves for the feature selection method of
SBFLDA + classifier  of  RF, which achieved the highest
prognostic  performance  in  PP  (AUC,  0.722±0.108;
accuracy,  0.793;  sensitivity,  0.636;  specificity,  0.889;
Z=2.039; P=0.041) (Figure 4).

Discussion

The main finding of this study was that the pre-treatment
CT-based radiomics classifier was a crucial marker of the
response to neoadjuvant therapy in locally advanced gastric
cancer.  We  found  that  the  feature  selection  method

SBFLDA + classifier RF of pre-treatment CT imaging in
PP could predict non-GR in locally advanced gastric cancer
with preoperative chemotherapy with an AUC of 0.722.

Currently,  pathological  evaluation  of  the  surgical
specimen  is  the  only  reliable  surrogate  marker  that
correlates  with  long-term  oncological  outcome  (27).
However, such data are available only after completion of
all  preoperative treatment and surgery,  which therefore
cannot be used as guidance for adjusting the therapeutic
approach. Accordingly, the development of non-invasive
biomarkers which have the potential to provide pre-therapy
prediction  is  essential.  Such  biomarkers  would  aid  in
identifying those patients who are less likely to benefit from
the current therapies for alternative treatment or intensive
follow-up regimens. Furthermore, the biomarkers would
also  offer  guidance  for  clinicians  to  decide  whether  to
perform  neoadjuvant  chemotherapy,  in  order  to  avoid
additional toxicity, improve the patients’ quality of life and
reduce unnecessary morbidity and cost (28). Therefore, the

Table 1 Demographic and clinical characteristics of 30 patients
with gastric cancer

Variables GR
(n=11)

non-GR
(n=19) P

Male: female 11:0 11:8   0.012

 (year) 57.8±7.2 56.6±10.7   0.197
Primary tumor site   0.494

　Fundus of stomach 1   2

　Body of stomach 3   2

　Antrum of stomach 7 15

Pre-treatment clinical stage   0.733

　cT3N0 1   1

　cT3N+ 4   6

　cT4N0 0   1

　cT4N+ 6 11

Post-treatment pathological stage <0.001

　pT0N0 9   0

　pT0N+ 0   1

　pT1N0 1   1

　pT2N0 0   1

　pT2N+ 0   2

　pT3N0 0   2

　pT3N+ 0   3

　pT4N0 1   3

　pT4N+ 0   6

GR, good response; non-GR, non-good response.

 

Figure  1  Computed  tomography  (CT)  images  of  one  male
patient,  at  53  years  old  with  gastric  cancer  at  the  stage  of
cT3N+M0, tumor regression grade 0 (TRG 0) after neoadjuvant
chemotherapy, pre-treatment. (A) Late arterial phase image; (B)
Portal venous phase image.
 

Figure  2  Computed  tomography  (CT)  images  of  one  male
patient,  at  57  years  old  with  gastric  cancer  at  the  stage  of
cT4aN+M0, tumor regression grade 3 (TRG 3) after neoadjuvant
chemotherapy, pre-treatment. (A) Late arterial phase image; (B)
Portal venous phase image.
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development of a pre-treatment model which is accurate
and predictive of the efficacy of neoadjuvant chemotherapy
is  important  for  patients  with  locally  advanced  gastric
cancers.

Many  gastric  cancers  are  well  visualized  with  CT
(13,15,19,29),  and  CT  is  a  routinely  used  and  easily
accessible source of information in clinical oncology (15).
Radiomics is a rapidly growing field that converts medical
images into high-dimensional, mineable and quantitative
data,  with  the  ultimate  goal  of  generating  imaging

biomarkers to improve evidence-based support of decisions
in  clinical  practice  (30-33).  Quantitative  radiomics  has
tremendous potential to improve cancer care by enhancing
the understanding of tumor physiology and aiding in the
implementation  of  personalized  medicine  (34).  As  a
noninvasive  and  cost-effective  method  of  assessing  the
tumor in its entirety, radiomics allows for the evaluation of
tumor  characteristics  such  as  spatial-temporal  hetero-
geneity,  which  is  often  considered  as  an  important
biomarker in oncology (13,35). Therefore, it is possible to
predict  the  response  to  neoadjuvant  chemotherapy  in
locally advanced gastric cancers with CT-based radiomics.

Previous studies have demonstrated the importance of
radiomics in the realm of the gastric cancer (36-38). Ba-
Ssalamah et al. (36) reported that the texture-based lesion
classification on arterial-phase scans was highly successful
in  differentiating  between  gastric  adenocarcinoma  and
lymphoma,  and  gastrointestinal  stromal  tumors  and
lymphoma, with misclassification rates of 3.1% and 0%
respectively. Yoon et al. (37) verified that heterogeneous
texture  features  on  CT  images  were  associated  with
increased survival  rates  in  patients  with HER2-positive
advanced gastric cancer who received trastuzumab-based
treatment. Liu et al. (38) stated that some texture features
including  mean  attenuation,  maximum attenuation,  all
percentiles  and  mode  derived  from  portal  venous  CT
images  correlated  significantly  with  the  differentiation
degree  and  Lauren  classification  of  gastric  cancers  (r,
−0.231−−0.324,  0.228−0.321,  respectively).  In  addition,
several  studies  have  demonstrated  the  importance  of
radiomics in predicting the neoadjuvant therapy outcome
for tumors (16,28,30,39). Giganti et al. (16) illustrated that
the  following  texture  parameters  could  identify  non-
responders after preoperative chemo-radiation therapy in
locally  advanced gastric  cancer  by multivariate  analysis:
entropy, range and root mean square, and entropy had an
AUC of 0.74 for GR prediction. Cha et al. (28) explained
that an AUC ranging from 0.69 to 0.77 was used to predict
T0  stage  after  neoadjuvant  chemotherapy  by  three
radiomics models in bladder cancer. Nie et al. (30) reported
an AUC of 0.89 of radiomics model for GR prediction after
preoperative chemo-radiation therapy in locally advanced
rectal cancer. Braman et al. (39) claimed that a combined
intratumoral and peritumoral radiomics feature set yielded
a maximum AUC of 0.78 within the training set and 0.74
within  the  independent  testing  set  for  pathological-
complete-response  prediction  after  neoadjuvant
chemotherapy  in  breast  cancer.  Our  present  study  also

 

Figure 3 Histogram depicting the prognostic performance [area
under the curve (AUC), accuracy, sensitivity and specificity] of the
12  crossed  methods  in  portal  venous  phase  (PP).  It  can  be
observed that  feature selection method of  selection by a  filter
based on linear discriminant analysis  (SBFLDA) + classifier of
random forest (RF) achieved the highest prognostic performance
in PP.

 

Figure 4 Receiver operating characteristic (ROC) curves of the
combinations of selection by a filter based on linear discriminant
analysis (SBFLDA) + random forest (RF) in predicting non-good
response (non-GR) in portal venous phase (PP).
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found that the radiomics classifier of pre-treatment CT
imaging  provided  a  maximum  AUC  of  0.722  in  PP  to
predict  non-GR according to different combinations of
feature  selection  and  classification  methods,  which  is
similar to the results of previous studies (16,28,39), but the
figure was lower than that of Nie’s study (30).

Due to the small sample size, 32 cross-combinations of
feature selection and classification methods were used to
investigate the wealth of radiomics for pre-treatment CT in
prediction  of  non-GR  in  this  study.  The  four  feature
selections  and  eight  classification  methods  used  in  this
analysis were chosen because of their simplicity, efficiency
and popularity  in the field of  machine-learning.  In this
study,  different  combinations  of  feature  selection  and
classifications  method were found to exhibit  distinctive
prognostic performances, and the combination of the SBF-
LDA  feature  selection  method  and  RF  classification
method indicated higher prognostic performance than the
other crossed methods for radiomics-based prediction of
the pathological response to neoadjuvant chemotherapy in
locally advanced gastric cancers. In other words, SBFLDA
is the optimal feature selection method, while RF is the
optimal classification method in this study. This possibly
results from the advantage of SBFLDA and RF. SBFLDA
is most commonly used as a pre-processing step to reduce
the dimensionality for pattern-classification. The goal of
SBFLDA is to project a dataset onto a lower-dimensional
space  with  good  class-separability  in  order  to  avoid
overfitting and reduce computational costs (40). RF is a
fairly efficient model-free method both in the classification
and  in  representing  higher  predictive  performance  in
previous studies (41,42). It is known that RF can identify
not  only  the  variables  that  have  a  linear  effect  on  the
response, but also the nonlinear ones. It has the ability to
discover the hidden relationship between the response and
the variables (41).

However, this research does have some limitations.
Firstly, the sample size was small compared to the large

number of predictors. Seventeen patients were excluded
from our initial population owing to our restrictive criteria,
resulting in a small but homogeneous population treated
with the same treatment protocol. It should be noted that
some  studies  on  radiomics  analysis  with  respect  to  the
response  to  neoadjuvant  therapy  have  been  performed
while  following  different  treatment  protocols  (15,30).
Furthermore,  due  to  the  limited  sample  size,  AUC,
accuracy, sensitivity and specificity were measured based on
the  training  cohort  but  not  on  the  testing  cohort.  To

enhance the conviction of our model, LOOCV was used as
an  internal  validation  technique  in  order  to  avoid
overfitting.

Secondly, the radiomics parameter was analyzed by the
only one type of voxel size. However, the stability of the
radiomics parameter may be related to the voxel size. In the
future, different voxel sizes should be used to improve the
accuracy of quantitative analysis.

Thirdly,  no  pharmacological  precautions  were  taken
such as hyoscine butylbromide or similar drugs to avoid
stomach movements, and the water distention technique
was used rather than the gas distention technique, which is
superior in lesions detection. The CT images of all patients
were reviewed carefully and respectively to avoid significant
image misalignments.

Conclusions

As a pilot study, our results provide initial evidence that it
is  possible  to  predict  non-GR  after  neoadjuvant
chemotherapy in locally advanced gastric cancers based on
the radiomics of CT. Radiomics may represent a promising
and  non-invasive  prognostic  tool  for  the  response  to
neoadjuvant  chemotherapy  in  locally  advanced  gastric
cancers, and it deserves further study.
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Table S1 Mean AUC, accuracy, sensitivity and specificity of all cross-combination statistical methods

Cross-combination
statistical methods

Late arterial phase Portal venous phase

AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity

RFERF-lda 0.338
(0.139–0.537) 0.345 0.273 0.389 0.540

(0.291–0.789) 0.552 0.182 0.778

RFERF-RF 0.293
(0.103–0.482) 0.414 0.091 0.611 0.566

(0.340–0.791) 0.552 0.273 0.722

RFERF-svmLinear 0.348
(0.150–0.546) 0.345 0.182 0.444 0.586

(0.368–0.803) 0.517 0.091 0.778

RFERF-svmRadial 0.409
(0.204–0.613) 0.414 0.182 0.556 0.626

(0.411–0.841) 0.552 0.091 0.833

RFERF-nnet 0.354
(0.148–0.558) 0.379 0.273 0.444 0.606

(0.387–0.824) 0.483 0.091 0.722

RFERF-nb 0.263
(0.079–0.446) 0.310 0.091 0.444 0.611

(0.341–0.880) 0.483 0.364 0.556

RFERF-knn 0.386
(0.161–0.611) 0.379 0.273 0.444 0.593

(0.384–0.802) 0.414 0.182 0.556

RFERF-lasso 0.394
(0.174–0.613) 0.379 0.364 0.389 0.576

(0.353–0.797) 0.483 0.091 0.722

RFENB-lda 0.404
(0.191–0.616) 0.414 0.091 0.611 0.631

(0.394–0.868) 0.621 0.636 0.611

RFENB-RF 0.194
(0.045–0.343) 0.276 0.000 0.444 0.609

(0.388–0.829) 0.586 0.273 0.778

RFENB-svmLinear 0.242
(0.067–0.416) 0.379 0.000 0.611 0.591

(0.382–0.801) 0.412 0.179 0.557

RFENB-svmRadial 0.263
(0.083–0.441) 0.414 0.000 0.667 0.586

(0.356–0.815) 0.552 0.091 0.833

RFENB-nnet 0.354
(0.150–0.556) 0.448 0.091 0.667 0.641

(0.429–0.853) 0.621 0.455 0.722

RFENB-nb 0.202
(0.031–0.372) 0.310 0.091 0.444 0.545

(0.293–0.797) 0.690 0.545 0.778

RFENB-knn 0.240
(0.049–0.430) 0.483 0.182 0.667 0.556

(0.341–0.770) 0.621 0.545 0.667

RFENB-lasso 0.242
(0.065–0.419) 0.345 0.000 0.556 0.530

(0.293–0.767) 0.552 0.273 0.722

SBFLDA-lda 0.621
(0.418–0.824) 0.621 0.727 0.556 0.596

(0.355–0.836) 0.655 0.455 0.778

SBFLDA-RF 0.338
(0.139–0.536) 0.310 0.000 0.500 0.722

(0.508–0.935) 0.793 0.636 0.889

SBFLDA-svmLinear 0.465
(0.254–0.674) 0.448 0.273 0.556 0.616

(0.392–0.840) 0.655 0.455 0.778

SBFLDA-svmRadial 0.268
(0.086–0.448) 0.310 0.000 0.500 0.545

(0.297–0.793) 0.655 0.273 0.889

SBFLDA-nnet 0.475
(0.263–0.686) 0.448 0.364 0.500 0.707

(0.485–0.928) 0.759 0.545 0.889

SBFLDA-nb 0.434
(0.220–0.647) 0.448 0.455 0.444 0.576

(0.333–0.818) 0.690 0.545 0.778

SBFLDA-knn 0.235
(0.072–0.396) 0.345 0.091 0.500 0.619

(0.408–0.829) 0.655 0.545 0.722

SBFLDA-lasso 0.485
(0.264–0.704) 0.379 0.182 0.500 0.571

(0.329–0.811) 0.621 0.455 0.722

lasso-lda 0.424
(0.215–0.633) 0.345 0.091 0.500 0.505

(0.282–0.727) 0.552 0.455 0.611

Table S1 (continued)



Table S1 (continued)

Cross-combination
statistical methods

Late arterial phase Portal venous phase

AUC (95% CI) Accuracy Sensitivity Specificity AUC (95% CI) Accuracy Sensitivity Specificity

lasso-RF 0.298
(0.111–0.484) 0.379 0.000 0.611 0.568

(0.345–0.791) 0.552 0.182 0.778

lasso-svmLinear 0.348
(0.151–0.545) 0.345 0.091 0.500 0.636

(0.429–0.842) 0.483 0.364 0.556

lasso-svmRadial 0.394
(0.189–0.597) 0.379 0.273 0.444 0.606

(0.380–0.831) 0.448 0.273 0.556

lasso-nnet 0.465
(0.254–0.675) 0.414 0.364 0.444 0.551

(0.331–0.769) 0.448 0.182 0.611

lasso-nb 0.331
(0.124–0.536) 0.414 0.182 0.556 0.455

(0.228–0.680) 0.483 0.273 0.611

lasso-knn 0.399
(0.186–0.611) 0.448 0.091 0.667 0.576

(0.327–0.824) 0.552 0.455 0.611

lasso-lasso 0.374
(0.168–0.579) 0.345 0.091 0.500 0.561

(0.346–0.774) 0.448 0.273 0.556

AUC, area under the receiver operator characteristic (ROC) curve; 95% CI, 95% confidence interval; RFERF, recursive features
elimination based on random forest; lda, linear discriminant analysis; RF, random forest; svmLinear, Linear-SVM; svmRadial,
support vector machines with radial kernel; nnet, neural networks; nb, Naive Bayes; knn, K-nearest neighborhood; lasso, least
absolute shrinkage and selection operator; RFENB, recursive features elimination based on Naive Bayes; SBFLDA, selection by
filter based on linear discriminant analysis.



Table S2 Result of Delong’s test for AUCs of cross-combination
statistical methods (AUC>0.600)

Cross-combination
statistical methods AUC (95% CI) Z P

Late arterial phase

　SBFLDA-lda 0.621
(0.418–0.824) 0.732 0.464

Portal venous phase

　lasso-svmLinear 0.636
(0.429–0.842) 1.295 0.196

　lasso-svmRadial 0.606
(0.380–0.831) 0.923 0.356

　RFERF-svmRadial 0.626
(0.411–0.841) 1.151 0.250

　RFERF-nnet 0.606
(0.387–0.824) 0.952 0.341

　RFERF-nb 0.611
(0.341–0.880) 0.807 0.419

　RFENB-lda 0.631
(0.394–0.868) 1.086 0.278

　RFENB-RF 0.609
(0.388–0.829) 0.965 0.334

　RFENB-nnet 0.641
(0.429–0.853) 1.308 0.191

　SBFLDA-RF 0.722
(0.508–0.935) 2.039 0.041

　SBFLDA-svmLinear 0.616
(0.392–0.840) 1.016 0.310

　SBFLDA-nnet 0.707
(0.485–0.928) 1.832 0.067

　SBFLDA-knn 0.619
(0.408–0.829) 1.105 0.269

AUC, area under the receiver operator characteristic (ROC)
curve; 95% CI, 95% confidence interval; SBFLDA, selection
by  filter  based  on  linear  discriminant  analysis;  lda,  linear
discriminant analysis; lasso, least absolute shrinkage and selection
operator; svmLinear, Linear-SVM; svmRadial, support vector
machines  with  radial  kernel;  RFERF,  recursive  features
elimination based on random forest; nnet, neural networks;
nb, Naive Bayes; RFENB, recursive features elimination based
on Naive Bayes; RF, random forest; knn, K-nearest neighborhood.


