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Abstract

Objective: To identify the differences among preinvasive lesions, minimally invasive adenocarcinomas (MIAs)
and invasive pulmonary adenocarcinomas (IPAs) based on radiomic feature analysis with computed tomography
(CT).
Methods: A total of 109 patients with ground-glass opacity lesions (GGOs) in the lungs determined by CT
examinations were enrolled, all of whom had received a pathologic diagnosis. After the manual delineation and
segmentation of the GGOs as regions of interest (ROIs), the patients were subdivided into three groups based on
pathologic analyses: the preinvasive lesions (including atypical adenomatous hyperplasia and adenocarcinoma in
situ) subgroup, the MIA subgroup and the IPA subgroup. Next, we obtained the texture features of the GGOs. The
data analysis was aimed at finding both the differences between each pair of the groups and predictors to distinguish
any two pathologic subtypes using logistic regression. Finally, a receiver operating characteristic (ROC) curve was
applied to accurately evaluate the performances of the regression models.
Results: We found that the voxel count feature (P<0.001) could be used as a predictor for distinguishing IPAs
from preinvasive lesions.  However,  the surface area feature (P=0.040) and the extruded surface area feature
(P=0.013) could be predictors of IPAs compared with MIAs. In addition, the correlation feature (P=0.046) could
distinguish preinvasive lesions from MIAs better.
Conclusions: Preinvasive lesions, MIAs and IPAs can be discriminated based on texture features within CT
images, although the three diseases could all appear as GGOs on CT images. The diagnoses of these three diseases
are very important for clinical surgery.
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Introduction

Lung cancer is the leading cause of cancer-related deaths in
the world (1), and adenocarcinomas as the most common

histological subtype were divided into preinvasive lesions,
minimally invasive adenocarcinomas (MIAs) and invasive
pulmonary adenocarcinomas (IPAs) collectively by the joint
of International Association for the Study of Lung Cancer,
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the  American  Thoracic  Society  and  the  European
Respiratory Society (2) in 2011.

Preinvasive  lesions  include  atypical  adenomatous
hyperplasia (AAH) and adenocarcinoma in situ (AIS). AAH
characteristically appears as a very small and pure ground-
glass opacity lesion (GGO) (3-6). AIS usually presents as a
pure GGO but sometimes is partly solid or occasionally is a
solid nodule (4,7-9). The imaging presentations of MIAs
and IPAs can be pure GGOs or partly-solid nodules  or
even a solid nodule (9-14).

It can be seen that all of them could present as GGOs
during CT examinations. Previous studies have shown that
preinvasive lesions can be followed up for a long time and
MIAs have either 100% or near 100% 5-year disease-free
survival (DFS) after complete resection (2,11). In contrast,
the 5-year DFS of an IPA of the pathological stage IA is
74.6%  (15).  Therefore,  early  diagnosis  and  exact
discrimination of these diseases that presents as GGOs on
CT are of great importance.

Previous  studies  regarding  the  identification  of
benign/malignant nodules among GGOs usually focused
on  lesion  size  (3-14),  the  appearance  of  the  solid
component (16),  the detection of growth or the density
change of GGOs (17). Many studies have suggested that
the GGOs lesion sizes were significantly different among
AIS, MIAs and IPAs (18-20), and the solid component size
within GGO lesions  could also  discriminate  IPAs from
both MIAs and AIS (21). Changes in the size and density of
GGOs were found in follow-up studies; however, they did
not significantly help in differentiating preinvasive lesions
and MIAs from IPAs (21-23).

However, now, except for these morphologic features,
there are still no generally accepted quantitative guidelines
that  have  been  issued  for  GGO  diagnosis.  Radiomic
analysis, as a more systematic approach, may provide more
information regarding the discrimination of preinvasive
lesions from IPAs or MIAs, as it is able to identify voxel-
level changes within GGOs. Thus, our study presents the
hypothesis that there may be some radiomic features that
can be used to discriminate GGOs. The present study aims
to find the differences among GGOs in CT images with
pathological diagnoses in the IPAs, MIAs, and preinvasive
lesion categories using radiomic analysis.

Materials and methods

The study was approved by the Medical Research Ethics

Committee and the Institutional Review Board of Tianjin
Medical University Cancer Institute & Hospital.

Patient population

The inclusion criteria for the lung cancer patients in our
study  were  as  follows:  1)  patients  with  a  pathological
diagnosis of cancer; 2) diagnostic CT scans before surgery;
3) CT images with a slice thickness of 2.5 mm or less; and
4) a single GGO. Patients were excluded if the lesions were
either very small (<5 mm) or very large (>5 cm). Ultimately,
there were 109 patients (mean age, 57.1 years; range, 38−
77 years) qualified for our study.

Thirty-two  (29.4%)  of  the  patients  had  preinvasive
lesions (including 22 patients  who were diagnosed with
AAH  and  10  patients  who  were  diagnosed  with  AIS),
37 (33.9%) had MIAs, and 40 (36.7%) had IPAs.

CT examinations

In  our  study,  all  the  CT examinations  were  performed
without contrast enhancement using a high-definition CT
system (Discovery CT750HD, GE Healthcare, Milwaukee,
Wisconsin,  USA),  and the scanning parameters  were as
follows:  DFOV = 40 cm;  tube  voltage  =  120 kVp;  slice
thickness = 1.25 mm; reconstruction interval = 1.25 mm;
gantry rotation speed = 0.8 s; and a scanning range from
the apex of the lung to the base to lung.

Delineation of ROI

The ROI in the present study was manually delineated and
segmented  slice-by-slice  on  the  CT  images.  The  ROI
covered the whole lesion, and the large vessels and arteries
in  the  ROI  were  excluded.  Finally,  the  seed  ROI  was
checked  slice-by-slice  in  every  subject  by  another
radiologist to ensure that the ROI in each subject satisfied
the lesion boundary definition.

Computerized texture analysis based on ROI

Radiomic  analysis  was  performed  using  the  3D  slicer
software  (Version  4.6.2;  Surgical  Planning  Laboratory,
B r i g h a m  a n d  W o m e n ’ s  H o s p i t a l ,  M A ,  U S A ;
http://www.slicer.org) (24). Then, the texture features were
calculated and extracted automatically using the module
called  “Heterogeneity  CAD”.  The  radiomic  features
(a total of 62 features; Supplementary Table S1) were divided
into six categories, including: 1) first-order and distribution

416 Li et al. Radiomic analysis for distinction of GGO on CT

© Chinese Journal of Cancer Research. All rights reserved. www.cjcrcn.org Chin J Cancer Res 2018;30(4):415-424

http://www.slicer.org
http://www.slicer.org


statistics;  2)  shape  and  morphology  metrics;  3)  Renyi
dimensions; 4) geometrical measures; 5) the gray-level co-
occurrence  matrix  (GLCM);  and  6)  the  gray-level  run
length  matrix  (GLRL).  The  details  of  the  significantly
different features that were found to distinguish any two
pathologic subtypes in the present study are shown in Table 1
and all other feature instructions can be found in the 3D
slicer software (https://www.slicer.org/wiki/Documentation/
Nightly/Modules/HeterogeneityCAD).

The  overall  procedure  of  this  analytical  scheme  was
performed by two radiologists with more than 3 years of
experience in chest CT imaging. Finally, we computed the
means of each of the CT texture feature values measured
by  the  two  independent  observers.  The  interobserver
agreement regarding the texture features of the GGO ROIs
was calculated using the interclass correlation coefficient
analysis (ICC) with SPSS software.

Statistical analysis

Features of the study population were reported as means
followed by standard deviations or medians followed by
ranges  in  light  of  their  normality  for  the  continuous
variables, and as frequencies for the categorical variables.
Initially,  Shapiro-Wilk  tests  and  Bartlett’s  tests  were
performed  to  confirm  the  normality  and  variance
homogeneity  of  the  data  regarding  the  features.
Subsequently, a Kruskal-Wallis rank sum test followed by
Dunn-Bonferroni post hoc test or an analysis of variance
(ANOVA) followed by Tukey’s HSD post hoc test where
appropriate, was used to indicate the significant differences
among  the  three  groups.  The  data  were  corrected  by
Bonferroni’s approach (P<0.05) with two-sided to control
for the type-1 errors.

Logistic regression analysis was conducted to find better
predictors  in  distinguishing  any  two  of  the  pathologic

subtypes. Features with P<0.05 in univariable model were
entered into the multiple logistic regression analysis. The
stepwise  model  selection  that mixed  both  forward  and
backward  methods  of  variable  selection  using  Akaike’s
information criterion (AIC) was used to select  the final
predictive model, and feature with P>0.05 was eliminated.
Receiver operating characteristic (ROC) curves for each
model  were  constructed.  AUC and its  95% confidence
interval (95% CI) estimated using DeLong’s method were
calculated to evaluate the performances of the regressive
models. P<0.05 was considered statistically significant.

All statistical analyses were conducted with Microsoft R
Open  (version  3.2.2;  https://mran.microsoft.com/)  in
Microsoft  Visual  Studio  Professional  2015  (version
14.0.25431.01 Update 3),  and with IBM SPSS Statistics
(Version 21.0; IBM Corp., New York, USA).

Results

Basic  characteristics  of  patients  and  texture  features
of GGOs

Patients’ basic characteristics and lesion information are
shown  in  Table  2  and  Supplementary  Figure  S1.  The
interobserver agreement regarding the texture features of
the GGO ROI was generally acceptable (the value ranged
from 0.417 to 0.999) (Supplementary Table S2).

Differences between preinvasive lesions and IPAs

Significant  differences  between  the  preinvasive  lesions
(including AAH and AIS) and the IPAs appeared in most of
the texture features of the first category (first-order and
distribution statistics) (Table 3), the second category (shape
and morphology metrics) (Table 4) and the texture matrix
categories,  such  as  the  GLCM  (Table  5),  the  GLRL
(Table 6), and other categories (Table 7).

Table 1 Feature instructions with significant differences that served to distinguish each pair of groups of preinvasive lesions, MIAs and IPAs

Feature category Feature name Feature instructions

First-order and
distribution statistics Voxel count Total number of voxels within the ROI of the grayscale image or parameter map

Shape and
morphology metrics

Surface area (mm2) Surface area of the specified ROI of the image in square millimeters

GLCM Correlation A value between 0 (uncorrelated) and 1 (perfectly correlated) showing the linear
dependency of gray level values in the GLCM

Geometrical measures Extruded surface area Surface area of the binary object when the image ROI is “extruded” into 4D,
where the parameter or intensity value defines the shape of the Fourth dimension

MIAs, minimally invasive adenocarcinomas; IPAs, invasive pulmonary adenocarcinomas; GLCM, gray-level co-occurrence matrix;
ROI, region of interest.
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Differences between IPAs and MIAs

Similarly, there were also significant differences between
the IPAs and MIAs in terms of many of the texture features
of the GGOs, which were found in the first category (first-
order  and  distribution  statistics)  (Table  3),  the  second
category (shape and morphology metrics) (Table 4) and the
texture matrix categories, such as the GLCM (Table 5), the
GLRL (Table 6) and other categories (Table 7).

Differences between preinvasive lesions and MIAs

Among the GGOs, the differences between the preinvasive
lesions and MIAs in terms of the texture features were only
found in the correlation feature of the GLCM category
(Table 5).

Logistic regression analysis

Univariate  logistic  regression analysis  revealed that  the
voxel count feature (P<0.001) of the first category (first-
order  and  distribution  statistics)  was  a  predictor  of
preinvasive lesions compared with IPAs (Table 8). For the
preinvasive lesions and the MIAs, the correlation feature
(P=0.046) of the GLCM category was the only independent

Table 2 Basic characteristics of patients (N=109)

Characteristics
n (%)

Preinvasive
lesions (N=32) MIAs (N=37) IPAs (N=40)

Female 19 (25.7) 27 (36.5) 28 (37.8)

Male 13 (37.1) 10 (28.6) 12 (34.3)

Age (year)

　 53.4±11.6 57.5±9.2 59.8±7.9
　Range 38−76 38−77 42−76

Lesion location

　Upper lobe
　(right/left) 20 (29.4) 24 (35.3) 24 (35.3)

　Middle lobe
　(right) 2 (20.0) 5 (50.0) 3 (30.0)

　Lower lobe
　(right/left) 10 (32.3) 8 (25.8) 13 (41.9)

MIAs,  minimally  invasive adenocarcinomas;  IPAs,  invasive
pulmonary adenocarcinomas.

Table  3 Differences  in  texture  features  in  first-order  and
distribution statistics  category between each pair  of  groups of
preinvasive lesions, MIAs and IPAs

Texture features

P value

Preinvasive
lesions vs.

MIAs

Preinvasive
lesions vs.

IPAs

MIAs vs.
IPAs

Gray levels >0.05 0.001 <0.001

Voxel count >0.05 <0.001 <0.001

Energy >0.05 0.004 <0.001

Entropy >0.05 0.003 <0.001

Minimum
intensity >0.05 >0.05 >0.05

Maximum
intensity >0.05 0.028 >0.05

Mean intensity >0.05 0.034 >0.05

Median intensity >0.05 >0.05 >0.05

Range >0.05 >0.05 >0.05

Mean deviation >0.05 0.008 >0.05

Root mean
square >0.05 >0.05 >0.05

Standard
deviation >0.05 0.007 >0.05

Skewness >0.05 >0.05 >0.05

Kurtosis >0.05 >0.05 >0.05

Variance >0.05 0.007 >0.05

Uniformity >0.05 0.002 <0.001

MIAs,  minimally  invasive adenocarcinomas;  IPAs,  invasive
pulmonary adenocarcinomas.  P value was calculated with
Kruskal-Wallis  rank sum test  followed by Dunn-Bonferroni
post hoc test.

Table 4 Differences in texture features in shape and morphology
metrics  category  between  each  pair  of  groups  of  preinvasive
lesions, MIAs and IPAs

Texture features

P value

Preinvasive
lesions vs.

MIAs

Preinvasive
lesions vs.

IPAs

MIAs vs.
IPAs

Volume (mm3) >0.05 0.001 <0.001

Surface area (mm2) >0.05 0.002 <0.001

Surface: volume
ratio >0.05 0.008 <0.001

Compactness 1 >0.05 0.002 <0.001

Compactness 2 >0.05 0.012 0.045

Spherical
disproportion >0.05 0.001 <0.001

Sphericity >0.05* 0.007* 0.038*

Maximum 3D
diameter >0.05 0.001 <0.001

Volume cc >0.05 0.001 <0.001

MIAs,  minimally  invasive adenocarcinomas;  IPAs,  invasive
pulmonary  adenocarcinomas;  Volume cc,  volume in  cubic
centimeters; *, statistical analysis using analysis of variance
(ANOVA) followed by Tukey’s HSD post hoc test, otherwise
using  a  Kruskal-Wallis  rank  sum  test  followed  by  Dunn-
Bonferroni post hoc test.
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predictors  (Table  8).  Between  the  MIAs  and  IPAs,  the
multiple logistic regression analysis showed that the surface
area feature (P=0.040) of the secondary category (shape and
morphology metrics) and the extruded surface area feature
(P=0.013) of the fourth category (geometrical measures)
were independent predictors. (Table 8)

ROC analysis

Based on the univariate and multiple logistic regression
analyses,  we  investigated  whether  the  features  could
accurately  distinguish  IPAs  from  MIAs  or  preinvasive

lesions. The results showed that the voxel count feature was
significantly different between the IPAs and preinvasive
lesions, exhibiting 82.5% sensitivity and 62.5% specificity
(95% CI: 0.650, 0.871; Figure 1A). The correlation feature
could predict preinvasive lesions and MIAs better, with a
sensitivity and specificity of 81.1% and 53.1%, respectively
(95% CI: 0.533, 0.795; Figure 1B). The surface area feature
(95%  CI:  0.671,  0.878)  and  the  extruded  surface  area
feature (95% CI: 0.648, 0.863) both achieved a sensitivity
and specificity of more than 60% and 80%, respectively, in
distinguishing IPAs from MIAs (Figure 1C, D). However,
when incorporating the two features as regression variables
in  predicting  the  pathological  subgroup  jointly,  the
corresponding ROC analysis showed higher sensitivity and
specificity of 67.5% and 86.5%, respectively.

Discussion

IPAs, MIAs and preinvasive lesions (including AAH and
AIS) can all appear as GGO lesions on CT scans. We used
radiomic analysis to investigate the differences among these

Table  5 Differences  in  texture  features  in  GLCM  category
between each pair of groups of preinvasive lesions, MIAs and IPAs

Texture features

P value

Preinvasive
lesions vs.

MIAs

Preinvasive
lesions vs.

IPAs

MIAs vs.
IPAs

Autocorrelation >0.05 <0.001 <0.001

Cluster
prominence >0.05 <0.001 <0.001

Cluster shade >0.05 <0.001 <0.001

Cluster tendency >0.05 <0.001 <0.001

Contrast >0.05 <0.001 <0.001

Correlation 0.019 >0.05 <0.05

Difference
entropy >0.05 0.003 <0.001

Dissimilarity >0.05 <0.001 <0.001

Homogeneity 1 >0.05 0.006 <0.001

Homogeneity 2 >0.05 0.005 <0.001

IMC1 >0.05 0.017 0.001

IDMN >0.05 0.001 <0.001

IDN >0.05 0.001 <0.001

Inverse variance >0.05 0.020 <0.001

Maximum
probability >0.05 <0.001 <0.001

Sum average >0.05 <0.001 <0.001

Sum entropy >0.05 0.005 <0.001

Sum variance >0.05 0.001 <0.001

Energy (GLCM) >0.05 0.001 <0.001

Entropy (GLCM) >0.05 0.004 <0.001

Variance (GLCM) >0.05 <0.001 <0.001

GLCM,  gray-level  co-occurrence  matrix;  MIAs,  minimally
invasive adenocarcinomas; IPAs, invasive pulmonary adeno-
carcinomas;  IMC1, informational  measure of  correlation 1;
IDMN, inverse difference moment normalized; IDN, inverse
difference normalized. P value was calculated with Kruskal-
Wallis rank sum test followed by Dunn-Bonferroni post hoc test.

Table  6 Differences  in  texture  features  in  GLRL  category
between each pair of groups of preinvasive lesions, MIAs and IPAs

Texture features

P value

Preinvasive
lesions vs.

MIAs

Preinvasive
lesions vs.

IPAs

MIAs vs.
IPAs

RLN >0.05 0.002 <0.001

RP >0.05 0.005 0.002

LGLRE >0.05 0.022 >0.05

HGLRE >0.05 0.001 0.035

SRLGLE >0.05 0.031 >0.05

SRHGLE >0.05 0.001 0.042

LRLGLE >0.05 0.002 0.013

LRHGLE >0.05 <0.001 0.007

LRE >0.05 0.003 0.011

GLN >0.05 0.010 <0.001

SRE >0.05 0.011 >0.05

GLRL, gray-level run length matrix; MIAs, minimally invasive
adenocarcinomas; IPAs, invasive pulmonary adenocarcinomas;
RLN, run length nonuniformity; RP, run percentage; LGLRE,
low  gray  level  run  emphasis;  HGLRE,  high  gray  level  run
emphasis;  SRLGLE,  short  run  low  gray  level  emphasis;
SRHGLE, short run high gray level emphasis; LRLGLE, long
run low gray level emphasis; LRHGLE, long run high gray level
emphasis; LRE, long run emphasis; GLN, gray level nonuni-
formity; SRE, short run emphasis. P value was calculated with
Kruskal-Wallis  rank sum test  followed by Dunn-Bonferroni
post hoc test.
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three diseases in the present study. We ultimately found
that the extruded surface area feature and the surface area
feature could be used to predict IPAs compared with MIAs.
We  also  found  that  the  correlation  feature  could
distinguish the MIAs from the preinvasive lesions, and the
voxel count feature could distinguish preinvasive lesions
from IPAs better.

For a long time, the study of the assessment of GGOs
using CT particularly used visual features such as lesion
size  and  the  presence  of  pleural  retraction  (25),  the
proportion of the solid component, the shape and size of
the lesion, and the window width (26). However, it was not
an easy or accurate method for identifying the different
diseases. To improve the diagnoses of the three diseases
and to address the challenge of differential diagnoses, many
studies have adopted quantitative methodological analyses
to  evaluate  GGOs.  Texture  features  provide  a  more
comprehensive assessment of GGOs. Some features have
been found to be especially sensitive in the detection of
tumor heterogeneity.

In  recent  years,  several  studies  have  applied  texture
analysis  of  GGOs.  One  study  (27)  found  that  higher
kurtosis and smaller mass are significant differentiators of
preinvasive lesions from IPAs; however, they only focused
on partly-solid GGOs and few texture features,  such as
histogram features, volumetric features, and morphological
features.  Son  et  al.  (28)  studied  nodule  size,  volume,
density, mass, skewness/kurtosis, and the CT attenuation
values of the histograms, in addition to the texture features
(uniformity and entropy) of ground-glass opacity nodules
with little or no solid component using CT. That study
found that the CT attenuation values and entropy could be
used  as  independent  predictors  of  invasive  adeno-
carcinomas.  Quantitative  analyses  of  preoperative  CT
imaging  metrics  can  help  to  distinguish  invasive
adenocarcinomas from preinvasive lesions or MIAs.

Based  on  the  preceding  studies,  the  present  studies
focused  on  GGOs  and  obtained  more  than  50  texture
features, including not only morphology but also matrix
information regarding the GGOs. In our study, we focused

Table 7 Differences  in  texture features  in  geometrical  measures  and Renyi  dimensions categories  between each pair  of  groups of
preinvasive lesions, MIAs and IPAs

Category Texture features
P value

Preinvasive
lesions vs. MIAs

Preinvasive
lesions vs. IPAs MIAs vs. IPAs

Geometrical measures Extruded surface area >0.05 <0.001 <0.001

Extruded volume >0.05 0.002 <0.001

Extruded surface: volume ratio >0.05 >0.05 >0.05

Renyi dimensions Box-counting dimension >0.05* >0.05* >0.05*

  Correlation dimension >0.05 0.001 <0.001

MIAs, minimally invasive adenocarcinomas; IPAs, invasive pulmonary adenocarcinomas; *, statistical analysis using analysis of
variance (ANOVA) followed by Tukey’s HSD post hoc test, otherwise using a Kruskal-Wallis rank sum test followed by Dunn-Bonferroni
post hoc test.

Table 8 Logistic regression analyses of texture features between each pair of groups of preinvasive lesions, MIAs and IPAs

Features Regression coefficients P OR 95% CI

Group of preinvasive lesions & Group of MIAs

　Correlation* 0.577 0.046 1.781 1.052−3.363

Group of preinvasive lesions & Group of IPAs

　Voxel count* 1.075 <0.001 2.930 1.704−5.451

Group of MIAs & Group of IPAs

　Surface area (mm2)# 0.451 0.040 1.571 1.033−2.494

　Extruded surface area# −1.073 0.013 0.341 0.133−0.758

MIAs, minimally invasive adenocarcinomas; IPAs, invasive pulmonary adenocarcinomas; OR, odds ratio; 95% CI, 95% confidence
interval; *, univariate logistic regression analysis; #, multiple logistic regression analysis entered with significant features (P<0.05) in
univariable model. For univariate and multiple logistic regression analyses, the independent variable was each feature and the
dependent variable was each group.
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on not only partly-solid GGO lesions but also many of the
texture  features.  We found  that  many  texture  features,
including morphology and the matrix information, were
significantly different between each pair of the groups of
preinvasive lesions, MIAs and IPAs; however, we did not
find that the kurtosis (27) or entropy (28) were significant
predictors of preinvasive lesions, MIAs or IPAs. This may
have been due to the different sample sizes and categories
of lesions.

In our study, we found that the voxel count feature was a
significant differentiator of preinvasive lesions from IPAs.
The voxel count is the total number of voxels within an
ROI, therefore, the voxel count feature reflects the size and
mass  of  GGOs.  We  found  that  a  larger  voxel  count
increased the probability of IPAs. Therefore, it could be
suggested that preinvasive lesions have smaller voxels; in
others words,  they have smaller sizes or masses.  In fact,

many previous studies (20) involving the morphological
assessment of GGOs revealed that preinvasive lesions could
be distinguished from IPAs with smaller lesion sizes.  In
turn,  the  GGOs  of  larger  sizes  or  with  larger  solid
components  had  a  higher  likelihood  of  being  invasive
adenocarcinomas (MIAs and IPAs) (29,30). A study based
on texture analysis of partly solid GGOs found that the
preinvasive lesions had significantly smaller volumes and
masses  than  IPAs  (27).  The  findings  of  our  study
corresponded to the findings of previous studies well.

We  also  found  that  the  correlation  feature  was  a
significant differentiator of preinvasive lesions from MIAs.
Correlation is a value that shows the linear dependency of
gray level values in the GLCM. This feature reflects the
correlation of the gray level in part of the images; its value
reflects the contrast of the gray levels in the GLCM. The
greater the mean of the gray level value of the GLCM is,

 

Figure 1 Receiver operating characteristic (ROC) analysis of significant differences between each pair of groups of preinvasive lesions,
minimally invasive adenocarcinomas (MIAs) and invasive pulmonary adenocarcinomas (IPAs). (A) Voxel count [area under the curve
(AUC)=0.761]; (B) Correlation (AUC=0.665); (C) Surface area (AUC=0.775); (D) Extruded surface area (AUC=0.756).
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the greater the value of the correlation is. In other words,
when the gray level value of the GLCM is different, the
value of the correlation is smaller. In our study, we found
that a higher correlation was a significant differentiator of
MIAs  from  preinvasive  lesions.  Several  studies  have
suggested that increased heterogeneity is associated with
malignant lung cancer (31) in GGOs and the solid portion
within the lesion tends to be found in invasive lesions (32).
Heterogeneous changes in the ROIs in our study may have
been reflected by the gray level  values  and even by the
correlation feature,  which is  the reflection of gray level
values in the GLCM.

MIAs  and  IPAs  are  both  invasive  lesions,  and  in  our
study,  we  found  that  the  surface  area  feature  and  the
extruded surface area feature were both differentiators of
IPAs from MIAs. The extruded surface area feature is the
measurement of the surface area when the image ROI is
“extruded” into 4D space, in which the feature or intensity
value  defines  the  shape  of  the  fourth  dimension.  The
surface  area  feature  measures  the  area  of  ROI  two-
dimensionally. In other words, the surface area feature and
the  extruded  surface  area  feature  both  reflect  the
macroscopic size and shape of the ROI mass. IPAs are more
malignant than MIAs in terms of pathology and disease
recovery.  Many  studies  of  GGO  morphology  have
suggested  that  IPAs  have  greater  diameters  than  MIAs
[5 mm or less (10,11) in diameter (4,9,10,12-14)]. In our
study, we focused on the texture features of GGOs. The
surface area feature and the extruded surface area feature
reflected more global information regarding the size and
shape of the ROI; and thus we believe that the surface area
feature  and  the  extruded  surface  area  feature  are  more
suitable for the revaluation of GGOs than the diameter of a
nodule. More importantly, these features could reflect the
homogeneity of ROIs using visualized data, and then be
used to distinguish IPAs from MIAs.

However, our study still  had several limitations. First,
the sample size of this study was not big enough. In future
studies,  we  will  enlarge  the  sample  size  and  do  some
prospective research. Second, the manual delineation of the
ROI may have been bound to have had some errors.  In
future studies, when the sample size is big enough, it will be
necessary to consider automatic segmentation of the ROI
and  then  manual  correction  slice-by-slice.  Third,  the
texture features in this study did not cover a large scale of
features within the GGOs. In future studies, more detailed
information  hidden  in  the  lesion  images  needs  to  be
obtained.

Conclusions

In our study based on texture features analyses of GGOs,
the voxel count feature was a significant differentiator of
preinvasive lesions from IPAs. The preinvasive lesions can
be differentiated from MIAs using the correlation feature.
The  differences  between  MIAs  and  IPAs  could  be
accurately  reflected by  the  surface  area  feature  and the
extruded surface area feature. Further details and proper
explanations of the texture features require more studies.
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Figure  S1  Computed  tomography  (CT)  images  of  typical
patients’ lesions. A−H stand for eight different patients’ ground-
glass opacity (GGO) lesions on axial CT images.



Table S1 Quantitative feature categories and feature names

Feature category Feature numbers and feature names

First-order and distribution statistics F1 Gray levels F7 Mean intensity F13 Skewness

F2 Voxel count* F8 Median intensity F14 Kurtosis

F3 Energy F9 Range F15 Variance

F4 Entropy F10 Mean deviation F16 Uniformity

F5 Minimum intensity F11 Root mean square

F6 Maximum intensity F12 Standard deviation

Shape and morphology metrics F17 Volume (mm3) F20 Compactness 1 F23 Sphericity

  F18 Surface area (mm2)* F21 Compactness 2 F24 Volume cc

  F19 Surface: volume ratio F22 Spherical disproportion F25 Maximum 3D diameter

GLCM F26 Autocorrelation F33 Homogeneity 1 F40 Sum entropy

F27 Cluster prominence F34 Homogeneity 2 F41 Sum variance

F28 Cluster shade F35 IMC1 F42 IDN

F29 Cluster tendency F36 IDMN F43 Contrast

F30 Variance (GLCM) F37 Energy (GLCM) F44 Dissimilarity

F31 Correlation* F38 Inverse variance F45 Sum average

F32 Difference entropy F39 Maximum probability F46 Entropy (GLCM)

GLRL F47 RLN F51 SRLGLE F55 LRE

F48 RP F52 SRHGLE F56 GLN

F49 LGLRE F53 LRLGLE F57 SRE

F50 HGLRE F54 LRHGLE

Geometrical measures F58 Extruded surface area* F59 Extruded surface:
volume ratio F60 Extruded volume

Renyi dimensions F61 Box-counting dimension F62 Correlation dimension

GLCM, gray-level co-occurrence matrix; GLRL, gray-level run length matrix; RLN, run length nonuniformity; RP, run percentage;
LGLRE, low gray level run emphasis; HGLRE, high gray level run emphasis; IMC1, informational measure of correlation 1; IDMN,
inverse difference moment normalized; SRLGLE, short run low gray level emphasis; SRHGLE, short run high gray level emphasis;
LRLGLE, long run low gray level emphasis; LRHGLE, long run high gray level emphasis; Volume cc, volume in cubic centimeters;
IDN, inverse difference normalized; LRE, long run emphasis; GLN, gray level nonuniformity; SRE, short run emphasis; *, statistically
significant to distinguish any two pathologic subtypes.



Table S2 Interobserver agreement regarding texture features of GGO ROIs using interclass ICC

Texture features ICC (95% CI) Texture features ICC (95% CI)

Gray levels 0.908 (0.100–0.981) Autocorrelation 0.997 (0.261–0.999)

Voxel count 0.999 (0.595–1.000) Cluster prominence 0.908 (0.010–0.981)

Energy 0.714 (0.002–0.928) Cluster shade 0.948 (0.018–0.989)

Entropy 0.838 (0.005–0.964) Cluster tendency 0.512 (0.001–0.844)

Minimum intensity 0.417 (0.001–0.787) Contrast 0.851 (0.006–0.967)

Maximum intensity 0.999 (0.650–1.000) Correlation 0.829 (0.005–0.962)

Mean intensity 0.834 (0.005–0.963) Difference entropy 0.999 (0.641–1.000)

Median intensity 0.984 (0.056–0.997) Dissimilarity 0.998 (0.362–1.000)

Range 0.968 (0.029–0.994) Homogeneity 1 0.992 (0.110–0.998)

Mean deviation 0.556 (0.001–0.866) Homogeneity 2 0.998 (0.393–1.000)

Root mean square 0.721 (0.003–0.930) IMC1 0.829 (0.005–0.962)

Standard deviation 0.707 (0.002–0.926) IDMN 0.832 (0.005–0.962)

Skewness 0.952 (0.019–0.990) IDN 0.997 (0.221–0.999)

Kurtosis 0.741 (0.003–0.937) Inverse variance 0.996 (0.215–0.999)

Variance 0.998 (0.367–1.000) Maximum probability 0.999 (0.425–1.000)

Uniformity 0.910 (0.010–0.981) Sum average 0.999 (0.564–1.000)

Volume (mm3) 0.999 (0.472–1.000) Sum entropy 0.996 (0.198–0.999)

Surface area (mm2) 0.994 (0.150–0.999) Sum variance 0.886 (0.008–0.976)

Surface: volume ratio 0.999 (0.537–1.000) Energy (GLCM) 0.999 (0.596–1.000)

Compactness 1 0.807 (0.004–0.956) Entropy (GLCM) 0.998 (0.354–1.000)

Compactness 2 0.999 (0.602–1.000) Variance (GLCM) 0.965 (0.027–0.993)

Spherical disproportion 0.832 (0.005–0.962) RLN 0.999 (0.498–1.000)

Sphericity 0.893 (0.008–0.977) RP 0.851 (0.006–0.967)

Maximum 3D diameter 0.528 (0.001–0.852) LGLRE 0.991 (0.095–0.998)

Volume cc 0.900 (0.009–0.979) HGLRE 0.948 (0.018–0.989)

Extruded surface area 0.984 (0.056–0.997) SRLGLE 0.829 (0.005–0.962)

Extruded volume 0.968 (0.029–0.994) SRHGLE 0.832 (0.005–0.962)

Extruded surface: volume ratio 0.720 (0.000–0.287) Box-counting dimension 0.795 (0.004–0.952)

LRLGLE 0.982 (0.050–0.996) LRHGLE 0.714 (0.002–0.928)

Correlation dimension 0.901 (0.009–0.979) LRE 0.795 (0.004–0.952)

SRE 0.714 (0.002–0.928) GLN 0.933 (0.014–0.986)

GGO, ground-glass opacity lesions; ROI, region of interest; ICC, correlation coefficient analysis; Volume cc, volume in cubic
centimeters; LRLGLE, long run low gray level emphasis; SRE, short run emphasis; 95% CI, 95% confidence interval;  IMC1,
informational measure of correlation 1; IDMN, inverse difference moment normalized; IDN, inverse difference normalized; GLCM,
gray-level co-occurrence matrix; RLN, run length nonuniformity; RP, run percentage; LGLRE, low gray level run emphasis; HGLRE,
high gray level run emphasis; SRLGLE, short run low gray level emphasis; SRHGLE, short run high gray level emphasis; LRHGLE,
long run high gray level emphasis; LRE, long run emphasis; GLN, gray level nonuniformity.


