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Introduction

Ultrasound is widely used for soft tissue imaging because 
of its perceived safety, noninvasiveness and low cost. It 
is also used in therapy, which has shown effect on the 
suppression of bacteria proliferation, the improvement 
of the therapeutic effect of the drug, and in thrombolysis 
in vitro and so on (1-3). This effect of ultrasound can be 
strengthened by microbubbles (4,5). Microbubble is a 
blood contrast medium, and it can not permeate outside 
blood vessels. For this reason, microbubbles can be used 
in the ultrasound examination to observe the blood stream 
information of organs, and large or small vessels. The 
diameter of the common microbubbles is 2-6 μm, which is 
similar to that of the red cell. After jet injection from the 
peripheral vein, and getting into the body, microbubbles 
can pass pulmonary circulation and go into circulation 

system, also can strengthen the imaging of the organ (6,7). 
Cell permeabilization using microbubbles and ultrasound 
has the potential of delivering molecules into the cytoplasm. 
The collapsing microbubbles and cavitation bubbles created 
by this collapse can generate impulsive pressures that cause 
transient membrane permeability, allowing exogenous 
molecules to enter the cells. Collapsed microbubbles or 
cavitation bubbles generated by collapsed microbubbles 
induce impulsive pressures such as liquid jets and shock 
waves, and these pressures affect the neighboring cells. 
The shock wave propagation distance from the center of 
a cavitation bubble that has the potential to damage the 
cell membrane is considerably larger than the maximum 
radius of the cavitation bubble (8). Several generations of 
the microbubble agents have also been developed. Early 
microbubbles contained an air core and were stabilized 
by a coating of albumin, starting with AlbunexR. Agents 
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with a fluorinated gas core were then developed, including 
OptisonTM with a protein shell and perfluoropropane 
gas core and DefinityR with a phospholipid shell and 
perfluoropropane core. Microbubbles are typically 
manufactured by mechanical agitation although microfluidic 
methods to engineer precise size distributions are in 
development (9). Cancer cells are more susceptible than 
normal cells to sonodynamic therapy (SDT) (10,11), which 
serves as the experimental foundation for the application of 
SDT to the treatment of cancer. Recently, SDT has been 
widely used in the therapy of cancer and has shown the effect 
of mediating apoptosis in many experimental systems in 
vitro or in vivo, but the detailed mechanism of this process is 
unclear. Moreover, the effect of ultrasound-induced apoptosis 
could be enhanced by porphyrin, anticancer drugs and other 
chemical compounds. The synergistic effect between SDT 
and other chemical compounds is referred to as sonodynamic 
therapy. In this review, we will discuss the mechanism of the 
induction of cancer cell apoptosis by SDT.

Mechanism

Blood vessels of cancer were influenced by SDT

Angiogenesis, the process by which the existing vascular 
network expands to form new blood vessels, is required 
for the growth of solid tumors (12). Angiogenesis, the 
development of new blood vessels from the endothelium of 
a pre-existing vasculature, is a critical process required by 
most solid tumors to support their growth and metastasis. 
Therefore, anti-angiogenic therapy has been demonstrated 
to be an attractive strategy for cancer treatment. SDT 
could influence the vascular to induce cancer cell apoptosis 
in vivo (13). SDT combined with microbubbles also 
has effect on the blood vessels of cancer. Because the 
microbubbles are compressible, they alternately contract 
and expand in the acoustic field, a phenomenon referred 
to as cavitation. The low peak negative acoustic pressures 
are usually less than 0.2 MPa. As a result, microbubbles 
usually grow and shrink rhythmically and symmetrically 
around their equilibrium size, which is a phenomenon 
known as stable cavitation. However, under higher acoustic 
pressures, typically greater than 0.60 MPa, the expansion 
and contraction of microbubbles usually become unequal 
and markedly exaggerated, leading to vessel destruction. 
This activity is termed inertial cavitation, which induced 
the improvement of cell membrane permeability and 
angiorrhexis of small vessels (14). When microbubbles are 
irradiated by ultrasound, they may induce the destruction of 

vessels and vascular endothelium, causing thrombopoiesis 
in the vessels. It blocked the blood supply of the malignant 
tumor to induce cancer apoptosis (15). Other researches 
had found that SDT can facilitate anti-angiogenic gene 
delivery and inhibit prostate tumor growth in vitro and in 
vivo (16,17). Since glucose, oxygen, and other requirements 
are not evenly delivered through the tumor vasculature, 
the blood vessels develop and harbor hypoxic regions, the 
cells undergo oxidative stress and the vessels fail to mature, 
inducing the apoptosis of cancer cells (18).

SDT induced cancer cell apoptosis through the influence of 
genes correlating with apoptosis
 
Modulating the expression of key molecular components 
of the apoptotic processes comprising cell death is an 
attractive antineoplastic approach. In some experiments, it 
was found that SDT could influence the gene expression 
to induce apoptosis. In a study, human myelomonocytic 
lymphoma cell line U937 cells were exposed to the 
frequency of 1.0 MHz with 100 Hz pulse repetition 
frequency ultrasound. After that, cell viability, apoptosis 
and gene expression were analyzed. This study showed that 
SDT could induce apoptosis, and down-regulate 193 genes 
and up-regulate 201 genes. For down-regulated genes, the 
significant genetic network was associated with cellular 
growth and proliferation, gene expression, or cellular 
development. For up-regulated genes, the significant 
genetic network was associated with cellular movement, cell 
morphology, and cell death. The present results indicate 
that SDT affect the expression of many genes and will 
provide novel insight into the bio-molecular mechanisms of 
SDT in therapeutic application for cancer therapy (19).

SDT could also improve gene transfection to treat 
cancer and induce cancer cell apoptosis. Survivin, a member 
of the mammalian inhibitor of apoptosis protein (IAP) 
family, possesses multiple functions, including apoptosis 
inhibition, proliferation, tumorigenesis, and cell cycle 
promotion (20). In all in vitro and in vivo experiments, it was 
found that ultrasound with microbubbles could improve 
survivin gene transfection, and could induce more of the 
apoptosis than that of the control group (21,22). Silencing 
of survivin gene expression with short hairpin RNA (shRNA) 
could be facilitated by this non-viral technique, and lead 
to significant cell apoptosis. This novel method for RNA 
interference represents a powerful and promising non-viral 
technology that can be used in tumor gene therapy and 
research.
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SDT can influence the genes relating to apoptosis. There 
are two main apoptotic pathways: the extrinsic (receptor-
mediated) and the intrinsic (mitochondria-mediated). The 
intrinsic pathway of apoptosis may be triggered by both 
internal and external stimuli, including many mediators, 
which either promote or inhibit the process (23). The 
most representative regulators of the mitochondria-
mediated pathway are P53, an inducer of apoptosis, and 
Bcl-2, a molecule with the opposite function (24-26). In 
a study, it was found that P53 and Bcl-2 were involved in 
ultrasound-induced apoptosis. Apoptosis and G1 arrest were 
induced primarily in P53+ cells, while P53– cells showed less 
apoptosis but exhibited G2 arrest. Likewise, the proliferation 
of cancer cells was much more strongly inhibited in P53+ 
than in P53– cells (27), and Bcl-2 was shown to respond to 
ultrasound irradiation (28).

SDT could influence signal pathway of cancer cells

Cell signal pathway plays an important role in the apoptosis 
of cancer cells. The mitochondria-caspase signaling pathway 
was activated in the SDT-induced apoptosis of cancer cells, 
and ultrasound promotes the expression of pro-apoptotic 
proteins such as Bax and caspase-3 in cancer cells (29). In 
another study, the significant reduction in sonodynamically 
induced apoptosis, nitroxide generation, and caspase-3 
activation by histidine suggested that active species such as 
singlet oxygen are important in the sonodynamic induction 
of apoptosis (30). Apoptosis induction has been reported 
to occur through a partial mediation of a Ca2+ dependent 
pathway. Calcium also has effect in the SDT-induced cancer 
cell apoptosis. SDT can influence the cell ion pathway to 
induce apoptosis. Intracellular Ca2+ levels can vary depending 
on the bubble activity (31), which may be related to cell 
membrane damage and the amount of time required to repair 
this damage. Furthermore, some sonicated cells retain high 
levels of Ca2+ long after ultrasound exposure, which indicates 
a complete loss of cell membrane eintegrity (32). Ca2+ can 
improve the cell apoptosis level (33).

Drug chemotherapy could enhance SDT-induced cancer 
cell apoptosis

The drug chemotherapy is a very important method in 
the therapy of cancer (34). We constantly study how to 
enhance the sensitivity of the drug to reduce the therapeutic 
dose of the drug, and reduce the toxic and side effects of 
the chemotherapeutic drugs. Ultrasound increases the 

membrane permeability without causing complete cell 
destruction which provides the experimental foundation 
for the enhancement of the drug osmosis of SDT in the 
treatment of cancer (35). In an in vitro study, MCF-7 cells 
were treated with 5-FU and sonicated at the frequency 
of 3.0 MHz and intensity of 3.0 W/cm2 for 1 min in the 
presence of Optison. Immediately after the treatment, cell 
death was mostly dependent on Optison, however, 24 h 
after treatment, cell death was more dependent on 5-FU. 
Ultrasound duty cycle increased cell death associated 
with either Optison or 5-FU. Furthermore, the study 
showed that the treatment with 5-FU and ultrasound 
increases the levels of Bax and P27kip1 proteins (36). These 
studies not only showed that ultrasound can enhance 
the chemotherapeutic effect in vitro but also studied its 
mechanism.

The other in vitro and in vivo studies also showed that 
SDT could enhance the chemotherapeutic effect of drugs 
by inducing cancer cell apoptosis (37,38). These findings 
showed that ultrasound exposure was a promising technique 
for cancer chemotherapy.

SDT could reverse chemo-drug resistance of cancer cells

Experimental and clinical investigations demonstrated that 
the chemotherapy-induced toxic effect and the development 
of drug resistance are the main barriers to successful therapy 
(39,40). Investigators hope to overcome drug resistance, 
whilst maintaining or even improving the therapeutic 
effects. Ultrasound exposure could make drug-resistant 
cancer cells more sensitive to anticancer drugs, which is a 
noninvasive physical approach for the induction of chemo-
drug resistance reversal in cancer cells. A study showed the 
reverse effect of ultrasound on multidrug resistance (MDR) 
in cancer cells. They investigated the mechanisms of 
therapeutic ultrasound as a physical approach to overcoming 
MDR in a multidrug-resistant human hepatocarcinoma 
cell line (HepG2/ADM). Their results demonstrated that 
ultrasound could reverse the chemo-drug resistance. Using 
reverse transcription-polymerase chain reaction (RT-PCR) 
technique, they found that ultrasound could significantly 
down-regulate the expression of P-glycoprotein (P-gp) 
and multidrug resistance-associated protein (MRP) at the 
mRNA level in HepG2/ADM cells (41). The study not only 
confirmed that the SDT could reverse the chemo-drug 
resistance of cancer cells but also found its mechanism. The 
study provided the experimental foundation for the clinical 
application of SDT combining with drugs to treat drug-
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resistant cancers.

Microbubbles could enhance the apoptosis-inducing effect 
of SDT on cancer cells together with drugs

One recent approach targeting solid tumors is the 
appl icat ion of  microbubbles ,  which loaded with 
chemotherapeutic drugs. The advanced drug carriers 
could be safely administered to the patients by intravenous 
infusion, and would circulate through the entire vasculature. 
The drug load could be locally released by ultrasound-
targeted microbubble destruction. In addition, tumors 
could be precisely localized by diagnostic ultrasound since 
microbubbles act as contrast agents (42). Microbubbles 
combined with ultrasound could release drugs in specific 
positions to save the drugs and reduce the toxic and side 
effects (43).

Summary 

SDT can induce the apoptosis of cancer cells, and 
permeabilize the cell membrane directly, thereby allowing 
the delivery of exogenous molecules into the cells (44). 
It could also make bio-effects through physical methods, 
which gives us a new method to treat cancers.

Future direction 

SDT has been widely used in cancer therapy, and has got 
curative effect. Microbubbles combined with ultrasound 
have showed superiority in cancer therapy. Especially, 
microbubbles together with drugs or genes can even cure 
cancers. However, the mechanisms of that are not yet clear, 
and in the future, it still needs to be further studied. The 
best concentration of microbubbles and the frequency of 
the ultrasound in the treatment also need to be explored. 
Therefore, better microbubbles that can cure cancer 
together with drugs or genes are required. Furthermore, 
they must be stable and exhibit high performance in the 
delivery of the drugs or genes. The mechanisms of SDT-
induced apoptosis in cancer cells in vitro also need to be 
studied, whether it occurs in vivo or not. We think that 
in the future SDT will be used more effectively in cancer 
treatment.
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